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Abstract. Via a comparison of the currently used language-based components

for knowledge sharing, this article first highlights the difficulties caused by the

inexistence – and hence absence of exploitation – of a shared core ontology of

knowledge representation languages (KRLs), i.e., (i) an ontology of KRL

abstract models which represents, aligns and extends standards, and (ii) an

ontology of KRL notations. For programmers, these are the difficulties of

importing, exporting or translating between KRLs; for end-users, the difficulties

of adapting, extending or mixing notations. This article then shows how we have

built this shared core ontology plus a tool for exploiting it. We use them for

specifying, parsing and translating KRLs, thus allowing their use without

additional programming. This ontology can be represented in any KRL that has

at least OWL-2 expressiveness. Thus, the results can easily be replicated. A Web

address for the tool and the full specifications is given.

Keywords: Language ontology � Meta-modelling � Syntactic translation �

Knowledge representation languages � General knowledge sharing

1 Introduction

The term “knowledge representation language” (KRL) may refer (at least) to one of the

next notions or their combination: (i) a semantic model, i.e., a set of types (alias, an

ontology) specifying semantic and/or logical notions, e.g., those of the SHOIN(D)

description logic, (ii) an abstract “data type” (ADT) model, i.e., an ontology for ADTs

such as abstract syntax trees or abstract semantic graphs (e.g., most types in the

OWL-DL ontology form an ADT model since they permit to store a graph that only

contains binary relations and follows a semantic model for SHOIN(D)), and (iii) a

concrete model, i.e., a textual/graphical/… KRL notation, e.g., Turtle and OWL-

Functional-Style. Knowledge sharing (KS) involves many tasks, some of which are

notation related: knowledge editing, parsing, importing, exporting, translating, etc.

Section 2 compares “approaches implementing these tasks” depending on the language

they offer for specifying the ADT model: (i) a notation grammar, e.g., EBNF, (ii) a
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generic language for creating ADTs, e.g., XML and MOF-HUTN, and (iii) an ADT

ontology.

The first approach implies creating a concrete grammar with actions associated to

its rules, and giving it to a parser generator, e.g., Lex & Yacc. The actions contain

functions or rules to build a less syntax-oriented ADT and build a semantic model

(directly or not: a parser/translator exploiting rules and a grammar for the semantic

model may be used). Even though an “interactive programming environment” gener-

ator (e.g., Centaur) may provide parsers, editors, checkers and interpreters or compilers

for specified languages, creating these specifications involves – or is akin to – pro-

gramming. These specifications (grammars and building/translation rules or functions)

are difficult to compare, extend and re-use: they cannot be organized by specialization

relations. Small changes in the concrete/ADT/semantic models often lead to important

changes in the specifications. Translations rules or procedures have to be specified for

each pair of languages.

With the second approach, specifying an ADT grammar (e.g., an XML schema)

permits to use a concrete parser or editor and specify various presentations (e.g., via

CSS and XSLT). However, since the concrete descriptions must then have an explicit

structure, they are too bulky to be used directly for building or displaying (parts of)

programs or knowledge bases, especially with standards in this approach (e.g., XML).

Thus, more adapted textual/graphic KRL notations are required and parsers for them

are still needed. Furthermore, since these languages are not based on logic, the tools

based on them cannot perform logical inferences, hence cannot exploit knowledge

representations.

With the third approach – i.e., the use of ontologies on notations, ADTs and

semantic elements instead of just grammars on them – the difficulties of the previous

two approaches can be reduced. So far however, (i) there were no ontologies for

notations, and (ii) the ontologies on KRL abstract models (ADTs and/or semantics)

were implicit (i.e., informally or insufficiently described) or about KRLs of insufficient

expressiveness for representing many other KRLs (hence for general knowledge rep-

resentation and sharing). Thus, these last ontologies were also not inter-related. This

article shows how (i) we created a core for an “ontology of KRL ontologies” by

representing, aligning and extending the major “KRL abstract models”, and then

extending it with a KRL concrete model ontology, and (ii) we have begun to use/extend

it for building an organized library of declarative concise “KRL specifications”. This

“ontology of KRL ontologies” supports – and also specifies (i.e., provides the

declarative code for) – a generic tool for parsing and exporting KRLs, hence also

performing (many) translations between them. Since programming is avoided and since

KRLs or KRL modifications can be specified in a concise way, even the end-users of

applications using such a tool can adapt the format of input and output KRLs to their

needs or preferences. This ontology, as well as a Web server interface to use this tool,

are available from http://www.webkb.org/KRLs/.

Section 3 introduces the notation used in this article for the illustrations.

Section 4 shows some relations between top-level “language elements” and more

general concepts, as well as between notation models and abstract models.

Section 5 explains the main primitive concepts and relations which permit to

represent and relate the various models in a uniform and concise way.
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Section 6 illustrates their use for the general “abstract model” parts of our ontology.

Section 7 illustrates their use for specifying particular KRLs and even grammars.

Representing grammars shows the generality of the approach and permits to re-use

existing parser generators. However, our tool currently only uses the LALR(1) parser

generator “Gold”; thus, it cannot parse KRLs requiring a more expressive grammar.

2 Comparison of the Various Language-Based Approaches

for KS

The model-related terminology used in this article is compatible with the terminology

used in syntax or semantic related works. To be compatible with the terminology used

in Model Driven Engineering (MDE) related works, especially the one related to MOF

(the Meta-Object Facility of the OMG: Object Management Group), the prefix “meta-”

would need to be systematically added before “model” since in MDE a document or

code is a “model” and it follows the specifications of a “meta-model”, e.g., an XML

schema. For clarity purposes, in this article, a “meta-model” – i.e., a language to

specify a language – refers to what is called a “meta-meta-model” in MDE.

The introduction noted that a model may be an “abstract model” (e.g., OWL-DL or

an XML schema; its specifies abstract structures of a certain type) or a “concrete

model” (e.g., a formal grammar or a CSS script; it specifies concrete structures of a

certain type). A concrete model, alias a presentation model, specifies either a formal

presentation (it is then a notation) or an informal one (e.g., that certain kinds of ADT

elements should be presented with bold characters). CSS and EBNF are therefore

meta-models for concrete models. MOF is a meta-model for – and a subset of – the

UML model. Since UML also refers to a notation, it is both an abstract and concrete

model. Even graphical notations implicitly or explicitly follow a grammar [1]. XML is

a meta-model for certain ADT models and concrete models. Meta-models are also

models.

This terminology permits to compare language-based approaches based on the kind

of meta-model they exploit: a notation-dependent one, a structure-dependent one and a

logic-based one. In each case, the next subsections show that problems comes from a

lack of expressiveness of the meta-model: there are some notions that it allows to

declare (in a model) but not to define. Thus, tools based on this meta-model cannot

exploit the semantics of these notions. Other tools that know this semantics are needed

for exploiting it. Furthermore, these notions are represented in different and ad-hoc or

implicit ways across models, thus making knowledge sharing and re-use more difficult.

As can be concluded at the end of the next subsections, the use of an ontology of KRL

ontologies, based on higher-order logics, is necessary to avoid problems.

2.1 Exploiting Notation-Dependent Meta-models

The grammar directed parsing of a textual/graphical description leads to a concrete

structure – e.g., a concrete syntax tree if a context-free concrete grammar is used – and

an ADT – e.g., an “abstract syntax tree” or an “abstract semantic graph”. To derive the
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abstract structure from the concrete one, an “action” – containing a transformation rule

or function – is generally associated to all or most concrete grammar rules. Then, static

semantic checking (type checking, context-dependent interactions), dynamic semantic

checking (interpretation, debugging) and “un-parsing” (pretty-printing of the abstract

structures, translation to other notations) can be performed or their code/specifications

can be generated. E.g., in the generic “interactive programming environment” generator

Centaur [2] – which may generate a parser, a structured editor, a type checker and an

interpreter or a compiler for a formal language – the concrete and abstract grammars

and building rules can be specified in the Metal formalism (which is then for example

transformed into a format on which Yacc is called), while the semantic related spec-

ifications are in Typol which is then transformed and executed via Prolog, Lisp and, via

the Minotaur system [3], attribute grammars. Centaur has been used for numerous

programming languages and one KRL [4].

Tools such as Centaur ease the task of writing parsers, translators, etc. They can be

seen as programming focused MDE tools. They could be extended to use ontologies or

MOF and XML models. If such a tool allowed the re-use of an ontology of abstract and

concrete models (such as the one we propose for KRLs), the various specifications that

must be provided by people for each language would be much lighter, comparable and

re-usable since the ontology permits to share and categorize them. This is much harder

otherwise, even with KRLs such as Prolog which are oriented toward execution rather

than modelling. Our KRL ontology includes sufficient information to allow people –

programmers as well as application end-users – to specify the peculiarities of their notations

for them to be usable as input or output KRLs: programers or users do not need to specify

conversions (except for complex ones between abstract elements referring to elements of

different logics) since they can be automatically derived.

To avoid the use of multiple structures or models, and thus also allow languages to

be directly extended, other (and often earlier) avenues have been proposed. They all

imply that extensions can be defined with the language and that it embeds a parser (e.g.,

via an “eval” function). This is eased when the language is homo-iconic, i.e., when its

abstract structure can be directly derived from the text (because they have hom same

structure). In other words, this is eased when new functions or rules can be built like

other data structures and then evaluated, as in Lisp and Prolog. Lithe [5] is a

class-based programming language looking like an EBNF grammar with semantic

actions containing C-like code; the classes are the non-terminal alphabet of the

grammar. Similarly, XBNF [6] is an extension of EBNF that is a KRL since it permits

to define some functions, logical relations and sets on each class of objects defined by a

rule. However, in all these other avenues, extensions to the language are restricted by

its core concrete and abstract models. In other words, these extensions do not allow to

represent and follow other models than the predefined ones. Yet, they show that using a

unique language to represent abstract and concrete specifications has advantages

(concision, …). A very expressive modelling-oriented KRL has those advantages

without the restrictions since it can represent different models (because of it expres-

siveness, the defined models are just specializations of the core models). It also permits

to categorize their elements.
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2.2 Exploiting Structure-Dependent Meta-models

As explained in the introduction and the previous sub-section, using EBNF and other

“languages to write concrete grammars” them implies programming-like tasks to build

the abstract structures (ADT and semantic ones) from the concrete ones. The building

of the ADT structure can be avoided when homo-iconic ADT meta-models are used,

e.g., XML, MOF-HUTN (the Human Usable Textual Notation for MOF) or XMI (the

XML-based notation for MOF models). However, the concrete descriptions are then

not enough concise and high-level or user-friendly [7] to be used directly for devel-

oping or displaying (parts of) programs or KBs. Indeed, (i) these descriptions have a

very explicit structure, and (ii) current meta-models – and hence their notations –

declare and allow the use of few structural notions (e.g., the notion of object, attribute

and – in MOF – association/relation), not logical notions (quantifier, meta-statement,

etc.) nor programming notions (parallelism, succession, class inheritance, parameter

evaluation, etc.). Although such “structural meta-models” permit to declare these

additional notions in models, they do not permit to define their semantics. In other

words, the tools which exploits structural meta-models (e.g., the XML parser and CSS

pretty-printer) can only understand the meaning – and hence exploit – the structural

elements. This is why, since 1999, for the Semantic Web and, more generally, for

knowledge sharing and exploitation purposes, the W3C advocates the use of RDF

instead of XML as meta-model. Indeed, XML is a tree-based structural meta-model

while RDF is a graph-based meta-model which follows a simple logic and can be

extended with language ontologies, e.g., those of OWL. However, like KRL models

represented with a structural meta-model, extensions by language ontologies are just

declarations of KRL components (not definitions): inference engines must handle them

in special ways to take into account their semantics. The OMG followed this approach

by proposing ODM (Ontology Definition Metamodel) which, in its version 1.1 [8],

declares the elements of four KRL models in MOF (with a few relations between them) –

RDF, OWL, Common Logic and Topic Maps – with a UML profile for the first two. No

integrated ontology is provided. To conclude, since XML and MOF-HUTN cannot be

used directly (as notations and ways to define semantics) for knowledge sharing or

programming, tools supporting those tasks include parsers and semantic-handling

modules in addition to – or replacement for – XML and MOF related tools.

Some MDE tools are described as having extensible input notations, e.g., BAM [9]

in process modelling. Actually, they handle an expressive meta-model which includes

the primitives for various (already existing) process modelling languages and thus can

handle each of them. The authors of these tools also count textual annotations – both

formal and informal ones – as a way to extend existing graphical notations.

2.3 Exploiting a Logic-Based Meta-model

As above noted RDF is an ADT meta-model following a simple logic. Its structures can

be presented with concrete models specific to RDF (e.g., RDF/XML: RDF linearized

with XML) or not (e.g., Turtle). These structures can be used for storing ADTs with

more semantics (e.g., SPIN structures are RDF representations of the SPARQL query
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language). The generic parser and translator specified in this article also works for

RDF. No generic parser just for RDF or another model seems to have been undertaken.

On the other hand, there have been several works on style-sheet based transformation

languages and ontologies for specifying how RDF abstract structures can be presented,

e.g., in a certain order, in bold, in a pop-up window, etc.: Xenon [10], Fresnel [11],

OWL-PL [12] and SPARQL Template [13]. Since these tools do not use a notation

ontology, they require a new template or style-sheet for each target notation.

KRLs of low expressiveness ensure good properties for knowledge exploitation,

typically speed and completeness. This is why KRL models of the OWL family have

different degrees of expressiveness, all inferior to First Order Logic (FOL). For

knowledge modeling and sharing purposes, the more expressive the used KRLs the

better. Indeed, more expressiveness permit more definitions (instead of declarations)

and thus permit to set more relations between different notions (logic ones, program-

ming ones, …) from one or various sources. In other words, a more expressive KRL

permits to represent knowledge in more precise (or less biased and ad-hoc) ways and in

more generic, high-level, normalized and concise ways, hence in easier to develop and

re-use ways. This is clear with the representation of cardinalities (or, more generally,

numerical quantifiers; e.g., see the part in italic bold in Table 1), meta-statements and

set interpretations. Thus, for knowledge modeling and sharing purposes – and also, as

explained below, for knowledge exploitation purposes – a meta-model needs to rep-

resent “higher-order logic” (HOL). RIF-FLD [14], the W3C “Framework for Logic

Dialects”, is based on HOL. To ease its re-use, in our KRL ontology we represented the

RIF-FLD elements and organized them via subtype and exclusion links (this organi-

zation was left implicit by the W3C, only a grammar and informal descriptions were

provided). KIF (Knowledge Interchange Format) [15] is a KRL – with a FOL model

but a HOL notation – which reached its purpose: being a de-facto KRL interlingua by

allowing KRL authors to define elements of their KRLs in KIF and thus ease the

translations of these KRLs into KIF.

A HOL model does not necessarily require a HOL inference engine to be handled.

One reason is that, interpreted with Henkin semantics, it is equivalent to (many-sorted)

FOL. This is how KIF has a HOL notation and a FOL model. Another reason is that

conversions to less-expressive models (via losses of information) can be performed for

applications, depending on their needs. E.g., a knowledge-retrieval application gain

speed and does not loose much precision and completeness by ignoring meta-statements

(modalities, …) as long as results are displayed with their associated meta-statements.

Since HOL does not restrict possible exploitations – as opposed to knowledge mod-

elled with KRLs of lower expressiveness – it is good for knowledge exploitation

purposes too.

For business-to-business KS where the used structural/logic meta-models are

well-known and sufficient for both businesses, KRLs of reduced expressiveness may be

used and tailored knowledge conversion procedures may then be developed. For

general knowledge sharing and re-use, or for making business-to-business KS more

efficient, knowledge representation should not be restricted and, to allow the use of

various KRLs, a generic parser-translator for KRLs is needed. This requires a shared

ontology of KRLs (abstract models and notations) and, more generally, of general

concepts. The Ontolingua server [16] was a first step in that direction. It proposed a
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structured library of interconnected fundamental ontologies, some of which formalized

concepts related to KRL models, especially frame-based ones, i.e., concepts similar to

those of OWL. It also hosted ontologies of its users in a structured library. However,

this server did not have protocols to detect and help avoiding implicit redundancies

between the ontologies and hence encouraging numerous relations between the various

represented concepts. In other words, the various ontologies did not form an integrated

one. The WebKB server [17] provides protocols solving this problem within a KB and

between different servers, without restrictions on the content or on the used KRLs, nor

forcing the users to agree on terminology or beliefs. The ontology proposed in this

article is hosted by a WebKB server and thus can be extended by Web users.

This ontology integrates the main standards for KRL models:

RDF + OWL + RIF-FLD from the W3C, Common Logic [18] (a subset of the KIF

model) from ISO/IEC and the “Semantics of Business Vocabulary and Business Rules”

(SBVR [19]) from the OMG. These standards have similar or complementary com-

ponents which, previously, were not semantically related. Another originality is that

our ontology includes a notation ontology.

3 Notation and Conventions Used in this Article

for Illustrations

To allow the display and understanding of its numerous required illustrations, this

article needs a concise and intuitive notation for KRL models of OWL-2 like

expressiveness.

To that end, this article uses the FL notation [20] (it does not advocate the gen-

eralized use of FL since it proposes a way for people to use any notation they wish).

Indeed, graphical notations are not concise enough and common notations such as

those of the W3C are not sufficiently concise and “structured” enough. Here, “struc-

tured” means that all direct or indirect relations from an object can be (re-)presented

into a unique tree-like statement so that the various inter-relations can readily be seen.

Table 1 illustrates this by representing the same statement – or set of statements – in

English and then in six formal notations: FE (Formalized-English [21]: it looks like

English but it is actually very similar to FL), FL, UML, Turtle (or Notation 3), OWL

Manchester notation and OWL Functional-style. This last notation is “positional

relation” based. The first five are graph-based notations: they are composed of concept

nodes and relation nodes.

The above textual graph-based notations are frame-based. A frame is a statement

composed of a first “object” (alias “node”: individual or type, quantified or not) and

several links associated to it (links from/to other objects). In this article, “link” refers to

an instance of a “binary relation type”. In OWL, such a type is instance of “owl:

Property” (“owl#Property” in FL: the namespace identifier is before the “#”). What is

not an individual is a type: relation type or concept type (an instance of owl#Class).

In this article, the default namespace is for the types we introduce via our ontology.

Each name for a concept type or individual is a nominal expression beginning by an

uppercase letter. The name of a relation type we introduce begins by “r_” (or “rc_” if

this is a type of link with destination a concrete term). Thus, names not following these
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Table 1. The same statement – or set of statements – in English and six different KRL notations:

FE, FL, UML, Turtle, OWL Manchester, OWL Functional-Style. In all other tables, FL is used.
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conventions and not prefixed by a namespace are KRL keywords. Within nominal

expressions, ‘_’ and ‘-’ are used for separating words. When both are used, ‘-’ connects

words that are more closely associated. Since nominal expressions are used for the

introduced types, the common convention for reading links in graph-based KRLs can

be used, i.e., links of the form “X R: Y” can be read “X has for R Y”. If “of” is used for

reversing the direction of a link, the form “X R of: Y” can be read “X is the R of Y”.

The syntactic sugar of FE makes this reading convention explicit. Following this

convention reduces the use of verbs and adjectives (which are more difficult to cate-

gorize and awkward to use with quantifiers) and thus normalizes knowledge.

In FL, if a link is not a subtype link nor another “link from a type”, its first node is

quantified and its default quantifier is “any”. This one is the “forall” quantifier for

definitions (in other words, the type in the first node is defined by this link). FL allows

different links with the same first node to quantify this node differently. Indeed, in FL,

the quantifiers of the source node and destination node of each link may also be

specified in its relation node or in its destination node. This original feature permits FL

to gather any number of statements into one visually connected graph. However, in this

article, the quantifier for the first node is always “any” and left implicit. A destination

node can also be source of links if they are delimited by parenthesis.

Given these explanations, the content of the tables in this article can now be read.

Every keyword not introduced above will be explained via a comment near it. Com-

ments use the C++ and Java syntax. In these tables, bold and italic characters are only

for highlighting some important types and for readability purposes.

4 Situating Top-Level Language Elements in a Top-Level

Ontology

Table 2 shows how types for KRL models and notations can be organized and

inter-related. E.g., RIF-FLD includes RIF-BLD, both are part of the RIF family of

models, and both have a Presentation Syntax (“PS”) and an XML linearization.

Table 3 relates Language_element and some of its direct subtypes to important

top-level types, thus adding precisions to these subtypes. Such a specification is

missing in RIF-FLD but is well detailed in SBVR. This is why Table 3 includes many

top-level SBVR types, although indirectly: the types with names in italics are still types

that we introduce but they have the same names as types in SBVR and are equal to them

or slight generalizations of them. This approach is for readability reasons and flexi-

bility: if the SBVR authors disagree with our interpretation of their types, only some

links to SBVR types will have to be changed, not our ontology. As illustrated by

Table 3, to complement and organize types from other ontologies, ours includes many

new types.

In RIF-FLD, depending on the context, the word “term” has different meanings. In

our ontology, Gterm generalizes all these meanings of “term”: it is identical to Lan-

guage_element and sbvr#Expression. In RIF-FLD, an “individual term” is an abstract

term that is not a Phrase (see Table 3), although it may refer to one. Individual_gTerm

– or, simply “Iterm” – generalizes this notion to concrete terms too. This distinction

was very useful to organize types of language elements, especially those from the
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implicit ontology of RIF-FLD (this framework uses different vocabulary lists, including

one for signatures; in our ontology, all these terms are inter-related). Used in this

context, the informal word “individual” is not equivalent to “something that is not a

type”. Indeed, since an Iterm may refer to a Phrase, an Iterm identifier may be a Phrase

identifier. Thus, Table 3 uses the construct “near_exclusion” instead of “exclusion”.

This construct has no formal meaning (it does not set exclusion links). It is only useful

for readability purposes. Table 3 also uses it to group and distinguish types for abstract

and concrete terms. Indeed, a (character) string may be seen by some persons as being

both abstract and concrete. Our ontology is – and must be – compatible with many

visions, when this can be achieved without information loss.

5 Ontology of a Core Meta-model for KRL Languages

RIF-FLD distinguishes three types of generic structures for a Gterm that is a function

or a phrase. We dropped their RIF-related restrictions and named them Positional_

gTerm, Gterm_with_named_arguments and Frame. Table 1 gave examples for posi-

tional and frame terms. A term with named arguments is similar to a frame except that,

Table 2. Examples of relations between KRLs.
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as in object-oriented languages, local attribute names are used instead of link types

(types are global). It could be argued that a same term could be presented in any of

these three forms and hence that these three distinctions should rather be syntactic.

However, the authors of RIF-FLD have not formalized the equivalence or correspon-

dence between (i) “classes and properties” (or frames “interpreted as sets and binary

relations”) and (ii) “unary and binary predicates”, in order to have a “uniform syntax

for the RIF component of both RIF-OWL 2 DL and RIF-RDF/OWL 2 Full combi-

nations” [22]. According to this viewpoint, each person re-using ontologies must

decide if, for its applications, stating such an equivalence is interesting or not. RIF rules

Table 3. Situating Language_element w.r.t. other types (note: names in italics come from

SBVR).
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or a macro language such as OPPL can certainly be used for such structural translations

[23]. However, to avoid imposing this exercise to most users of our KRL ontology, and

to avoid limiting its use for specifying KRLs, it formalizes relations between a frame

and a Conjunction_of_links_from_a_same_source (this is done in the last 17 lines of

Table 9; reminder: a link is – or can also be seen as – a binary relation).

We found that a small number of link types are sufficient for defining a structure for

abstract terms and specifying their related concrete terms. Table 4 lists and explains

Table 4. Main links for defining a structure for abstract terms and specifying concrete terms.
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Table 5. Important structured concrete term types and definition of their default presentation.
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the main link types. They can be seen as a representation and extension of the signature

system of RIF-FLD. The ideas are that (1) every composite term can be decomposed

into a (possibly implicit) operator (e.g., a predicate, a quantifier, a connective, a

collection type) and a list of parameters (alias, “parts”), and (2) many non-binary

relations can be specified as links to a collection of terms. Table 6 and the subsequent

tables use the link types of Tables 4 and 5 directly or via functions which are shortcuts

for specifying such links. This is highlighted via bold characters in those tables. The

end of Table 4 specifies one of these functions (f_link_type). In the Tables 6, 7, 8, 9, 10

and 11, which illustrate the organization of subtypes of Phrase and Iterm, f_link_type is

used to define some abstract terms as links and hence enables to store them or present

them as such when necessary. To illustrate the way these ADTs are instantiated by

knowledge representations, Table 12 shows a phrase in different notations and then a

part of its abstract structure.

Some links are used for both abstract and concrete terms. E.g., rc_operator_name is

often also associated to an abstract term for specifying a default name for its operator. If

no such link is specified or if the empty string (“”) is given as destination, the operator

type name (without its namespace identifier) is used as default operator name.

Table 5 lists major kinds of structured concrete terms and thus also the main

presentation possibilities for structured abstract terms (see the 14 names in italics).

Based on the five main categories for these concrete terms (see the names in bold and

not in italics), it is easy to find the five categories of abstract terms they correspond to,

even though such links are not shown in Table 5. We found that each of these concrete

term types can be defined with only a few types of links, those that begin by “rc_” and

that were listed in Table 4. We defined some functions to provide shortcuts for setting

those links when defining a particular concrete term, e.g., fc_prefix-fct-like_type (its

use is illustrated by Table 13 for the definition of RIF-PS and JSON-LD).

In our ontologies, links from a type do not specify that the given destination is the

only one possible (to do so in FL, “=>” would need to be used instead of “:” after the

link type name; in OWL-based descriptions, owl#allValuesFrom can be used). Thus,

such links represent “default” relationships: if a link from a type T specializes a link

from a supertype of T, it overrides this inherited link. This is also true when the link

type is functional (i.e., when it can have only one destination) and its destination for T

does not specialize the destination for a supertype of T. The links beginning by “rc_”

look functional but are not: in FL, multiple destinations can be stated to indicate

different presentation possibilities. However, by convention, such links override

inherited links of the same types. Table 5 shows how different kinds of “default

presentations” can be represented in concise ways.

Improving General Knowledge Sharing 377

philippe.martin@univ-reunion.fr



6 Ontology of KRL Content Models

Table 6. Important top-level types of phrases.
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Table 7. A way to restrict this general model for specifying particular KRLs.

Table 8. Important types of composite formulas.
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Table 9. Important types of relations between frames, links and positional formulas.

Table 10. Important top-level types of “individual terms” (not phrases unless referring to one).
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Table 11. Important subtypes of one subtype of Individual_gTerm (see Table 10).

Table 12. One phrase in different notations; part of its abstract structure represented in UML.

In English: "There exists a car which is red  (one shade of red; it may also have other colors)". 

In FE: `a Car with color a Red´.      In RIF-PS:  Exists ?car ?red  ( color( ?car#Car  ?red#Red ) ) 

In FL: a  Car color :  a Red ;         In RIF-PS:  Exists ?car ?red  ?car#Car [ color -> ?red#Red ]. 

In N-Triples:   Car8 color Red3 .    Car8 type  Car . Red3 type Red . 

                                                             Language-element = Gterm
                    ^      

                                   Abstract_phrase                                        Individual_gTerm  
                                           ^                                                                         ^ 

Quantification   Conjunction_phrase   Atomic_formula       Fterm_or_variable    Operator 

                   ^                             ^                           ^                        ^              ^                      ^ 

Existential_quantification   Frame  r_part  1  Link    Functional_term           Link_operator 

                                Gterm_reference 

                                            ^           ^ 

Link__A-car-with-color-a-red      Concept-type    Relation-type

part                                                            part  

Existential-quantification__a-Red    part     Concept-type__Red                  Link-operator__color 

part 

Legend (+ see Table 1) :
         :  instance link                                                           Relation-type__color
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7 Ontology of Particular KRLs and Grammars

In a KRL that is “perfectly regular with respect to a particular kind of abstract/concrete

term” allows all the terms of this kind to be (re-)presented in the same way, e.g., all the

terms which in our approach have an operator (the “operator based terms”). A perfectly

regular KRL is then one which is perfectly regular for all the kinds of terms it allows.

The “Triplet notation” is perfectly regular. To be so, a more expressive KRL would

have to be fully based on an ontology and be HOL based. Since KIF re-uses the LISP

notation, it is perfectly regular with respect to “operator based concrete terms” and

“concrete terms for collections”. Most KRLs have some ad hoc abstract and concrete

terms. E.g., in RIF-XML, document directives are presented in different ways: some via

links, some via XML attributes. In RIF-PS, they are presented as positional terms but

not links. Thanks to the fact that our general model represents the directives both as

parts and links (see Table 6), these RIF predefined directives can be represented

within/via frames as well as via positional terms. The first part of Table 13 shows how

ad hoc concrete terms of particular types of KRLs can be specified in a concise way.

The approach used to do so for abstract terms (see Table 7) is here re-used. Thus, both

abstract and concrete terms of a KRL – or a family of KRLs – can be specified at the

same time and in a concise way. Furthermore, since (families of) KRLs and their

specifications can be organized by specialization relations, they can be formally and

visually compared.

The second part of Table 13 shows how it is possible to declaratively specify all the

presentations of a type of abstract term by an ordered list of concrete terms, given a

type of presentation and the list of usable notation types. Since the function fc_r_parts

is recursive and, in turn, uses the same kinds of specifications (via links of type rc_parts

or, for non-structured terms, links of type rc_), the specified ordered list only contains

strings. Finally, given the value of rc_separator between tokens in the given notation

(i.e., the kinds of space characters separating them), the kinds of strings that can be

associated to this collected list are specified. Thus, the whole specification is fully

declarative. However, for concrete term generation purposes, choices have to be made,

e.g., about space indentation. In our system, this is implemented via generation

functions (also included in our ontologies) which recursively navigate the abstract and

concrete specifications to find the most precise relevant specifications. Since our system

rejects the entering of ambiguous knowledge – e.g., the entering of different concrete

term specifications for a same type of abstract term and the same type of notation –

finding the most precise relevant specifications was easy to implement.

Specifying parsing rules and generating them – given an abstract term and a

grammar notation – can be represented using the same techniques. The first part of

Table 14 shows the beginning of an ontology for grammars. The second part shows an

example of grammar rule (and its connection to a grammar but this part actually needs

not be generated). Once the grammar rules are generated – in a way similar to pre-

sentation generation – the generation of their presentation is then done exactly as for

any other statement, according to the given grammar notation.

Our ontologies can be represented with KRLs having at least OWL-2 expressive-

ness. To that end, r_parts links with “lists with cardinalities” (e.g., [0..1 Y, 1..* Z]) as
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Table 13. Ways to specify concrete terms for particular kinds of terms in particular notations.
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destinations can be replaced by lists without cardinalities (e.g., [Y, Z]) as long as r_part

links are also used for specifying the cardinalities (e.g., X r_part: 0..1 Y, 1..* Z). The

use of functions may also be avoided via macros, i.e., by expanding function

definitions.

Replicating our work does not require details on the implementation of our system:

our ontologies are the required declarative code. The used inference engine is irrele-

vant as long as it can handle the specifications. However, some readers might be

interested to know that our translation server exploits the parser available at http://

goldparser.org while its inference engine was implemented in Pascal Object (for

portability purposes) and exploits “tableaux decision procedures” [24]. This server and

its inference engine have recently been designed by GTH (http://www.mitechnologies.

net). This work on a generic approach for handling KRLs comes from the many

problems encountered to handle various versions of FL and other KRLs in the

knowledge sharing servers WebKB-1 [25] and WebKB-2 [17, 20].

Table 14. Important links from Grammar_element, followed by an example of grammar head

rule.
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Our ontology of KRL ontologies (i.e., its core and the specifications of particular

KRLs) and our translation server are accessible from http://www.webkb.org/KRLs/. Its

interface is similar to Google Translate except that the input and output languages are

KRLs and, instead of KRL names, KRL specifications can also be given by the users.

8 Conclusions

One contribution of this article is a generic model for structured abstract or concrete

terms. It is simple: only a few types of links and a few distinctions (Tables 4 and 5).

This operator + parameters based model permits to define terms in a concise and

flexible way, and thus also their presentation and parsing.

A second contribution is the design of a KRL model ontology by representing,

aligning and extending various KRL models, and defining their elements via the above

cited few links, as illustrated by Tables 3, 6, 7, 8, 9, 10 and 11. Thus, the merged

models are also easier to re-use.

A third one is the design of a KRL notation ontology – to our knowledge, the first

one – based on the above two cited contributions, as illustrated by Tables 5, 13 and 14.

These three contributions permit to avoid or reduce the problems listed in the

introduction and Sect. 2: those of KRL syntactic translation, KRL parser implemen-

tation, dynamic extension of notations, etc. Thus, we provide an ontology-based

concise alternative to the use of XML as a meta-language for easily creating KRLs that

follow KRL ontologies. Therefore, this also complements GRDDL and can be seen as a

new research avenue (GRDDL permits to specify where a software agent can find tools –

typically XSLT ones – to convert a given KRL to RDF/XML). This avenue is

important given the frequent need for applications to (i) integrate or easily import and

export from/to an ever growing number of models and notations (XML-based or not),

and (ii) let the users parameter these notations.

Previous attempts (by the second author of this article) based on directly extending

EBNF – or directly representing or generating concrete terms in a KRL or transfor-

mation language – required much lengthier specifications that were also more difficult

to re-use.

Besides its translation server, the GTH company will use this work in its appli-

cations for them to (i) collect and aggregate knowledge from knowledge bases, and

(ii) enable end-users to adapt the input and output formats they wish to use or see. The

goal behind these two points is to make these applications – and the ones they relate –

more (re-)usable, flexible, robust and inter-operable.

One theme of our future work on this approach will be the generation of parsing

actions in parsing rules, given particular ADTs to use. A second theme will be the

representation and integration of more abstract models and notations for KRLs as well

as query languages and programming languages. A third theme will be the extension

of our notation ontology into a full presentation ontology with concepts from

style-sheets and, more generally, user interfaces.
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