

 i

Proceedings of the

ECAI 2010

Workshop on

Intelligent Engineering Techniques for

Knowledge Bases (IKBET)

affiliated with the

19
th

 European Conference on

Artificial Intelligence

August 16!20, 2010

Lisbon, Portugal

Alexander Felfernig

Franz Wotawa (eds.)

 ii

Preface

Knowledge bases are encountered in AI areas such as configuration, planning,

diagnosis, semantic web, game playing, and others. Very often the amount and

arrangement of the elements in the knowledge base outstrips the capability of

a knowledge engineer to survey them and to effectively perform extension and

maintenance operations ! a situation that triggers an enormous demand to

extend and improve existing development and maintenance practices. This

demand is further boosted by emerging Social Semantic Web applications that

require the support of distributed engineering scenarios.

Intelligent development and maintenance approaches are of high relevance

and have attracted lasting research and interest from industrial partners. This is

demonstrated by numerous publications, for example, in the IJCAI, AAAI, ECAI,

KCAP, CP, IUI, and ISWC conference and workshop series. These working notes

include research papers that are dealing with various aspects of knowledge

engineering including overviews of commercial and open source systems,

automated testing and debugging, knowledge representation and reasoning,

knowledge base development processes, and open research issues.

Eleven papers demonstrate the wide range of knowledge engineering research

and the diversity and complexity of problems to be solved. Besides the

contributions of research institutes we have received three industry!related

contributions which show the relevance of intelligent knowledge engineering

techniques in the commercial context. Best papers from the workshop have

been invited to submit an extended version of the paper to the AICOM special

issue on “Intelligent Engineering Techniques for Knowledge Bases”. This journal

special issue will be available in Spring 2011.

Alexander Felfernig

Franz Wotawa

August 2010

 iii

Organization

Chairs

Alexander Felfernig, Graz University of Technology

Franz Wotawa, Graz University of Technology

Program Committee

Alexander Felfernig, Graz University of Technology

Dieter Fensel, University of Innsbruck

Gerhard Friedrich, University of Klagenfurt

John Gero, George Mason University

Albert Haag, SAP Germany

Dietmar Jannach, University of Dortmund

Tomi Männistö, Helsinki University of Technology

Monika Mandl, Graz University of Technology

Lars Hvam, Technical University of Denmark

Gregory Provan, Cork Constraint Computation Centre

Monika Schubert, Graz University of Technology

Steffen Staab, University of Koblenz

Gerald Steinbauer, Graz University of Technology

Markus Stumptner, University of South Australia

Juha Tiihonen, Helsinki University of Technology

Franz Wotawa, Graz University of Technology

Markus Zanker, University of Klagenfurt

 iv

Table of Contents

Modelling Product Families for Product Configuration Systems with Product Variant Master

N. H. Mortensen, L. Hvam, and A. Haug . 1

Sigma: An Integrated Development Environment for Logical Theories

A. Pease and C. Benzmüller . 7

Characterization of Configuration Knowledge Bases

J. Tiihonen . 13

Efficient Explanations for Inconsistent Constraint Sets

A. Felfernig, M. Schubert, M. Mandl, G. Friedrich, and E. Teppan . 21

On Classification and Modeling Issues in Distributed Model!based Diagnosis

F. Wotawa and I. Pill . 27

Diagnosis Discrimination for Ontology Debugging

K. Shchekotykhin and G. Friedrich . 33

On the Way to High!Level Control for Resource!Limited Embedded Systems with Golog

A. Ferrein and G. Steinbauer . 39

A Domain Language for Expressing Engineering Rules and a Remarkable Sub!Language

G. Narboni . 45

Protocols for Governance!free Loss!less Well!organized Knowledge Sharing

P. Martin . 51

Knowledge!based Implementation of Metalayers – The Reasoning!Driven Architecture

L. Hotz and S. von Riegen . 57

Challenges of Knowledge Evolution in Practice

A. Falkner and A. Haselböck . 67

Modelling Product Families for Product Configuration
Systems with Product Variant Master

Niels Henrik Mortensen, Lars Hvam, Anders Haug1

1

Centre for Product Modelling, Technical University of Denmark.

www.productmodels.org, www.man.dtu.dk, www.sam.sdu.dk

Abstract. This article presents an evaluation of applying a
suggested method for modelling product families for product
configuration based on theory for modelling mechanical prod-
ucts, systems theory and object-oriented modelling. The mod-
elling technique includes a so-called product variant master
and CRC-cards for modelling and visualising the parts and
properties of a complete product family. The modelling tech-
niques include:

 Customer, engineering and part views on the
product assortment to model the properties,
functions and structure of the product family.
This also makes it possible to map the links be-
tween the three views.

 Modelling of characteristics of the product vari-
ants in a product family

 Modelling of constraints between parts in the
product family

 Visualisation of the entire product family on a
poster e.g. 1x2 meters

The product variant master and CRC-cards are means to
bridge the gap between domain experts and IT-developers,
thus making it possible for the domain experts (e.g. engineers
from product development) to express their knowledge in a
form that is understandable both for the domain experts and
the IT-developers.

The product variant master and CRC-cards have currently
been tested and further developed in cooperation with several
industrial companies. This article refers to experiences from
applying the modelling technique in three different companies.
Based upon these experiences, the utility of the product vari-
ant master is evaluated.

Significance. Product configuration systems are increasingly
used in industrial companies as a means for efficient design of
customer tailored products. The design and implementation of
product configuration systems is a new and challenging task
for the industrial companies and calls for a scientifically based
framework to support the modelling of the product families to
be implemented in the configuration systems.

Keywords. Mass Customization, modularization, product
modelling, product configuration, object-oriented system de-
velopment.

1. INTRODUCTION

Customers worldwide require personalised products. One way

of obtaining this is to customise the products by use of product

configuration systems (Tseng and Piller, 2003, Hvam et al

2008).

A product configuration system is based on a model of the

product portfolio. A product model can be defined as a model

that describes a product’s structure, function and other proper-

ties as well as a product’s life cycle properties e.g. manufac-

turing, assembly, transportation and service (Krause, 1993,

Hvam, 1999). A product model used as a basis for a product

configuration system also includes a definition of the rules for

generating variants in the product assortment (Hvam et al,

2008, Schwarze, 1996).

A product configuration system is a knowledge-integrated

or intelligent product model, which means that the models

contain knowledge and information about the products, and

based on this is able to derive new specifications for product

instances and their life cycle properties. Experiences from a

considerable number of industrial companies have shown that

often these product configuration systems are constructed

without the use of a strict modelling technique.

As a result of this, many of the systems are unstructured

and undocumented, and they are, therefore, difficult or impos-

sible to maintain or develop further. Thus, there is a need to

develop a modelling technique which can ensure that the

product configuration systems are properly structured and

documented, so that the configuration systems can be continu-

ally maintained and developed further.

In order to cope with these challenges, a technique for

modelling product families for product configuration has been

developed - which makes it possible to document the product

configuration systems in a structured way.

This article evaluates the experiences from applying the

suggested method (product variant master and CRC-cards) for

modelling product families for product configuration systems.

The suggested method is based on three theoretical domains:

 Object-oriented modelling (Bennett et al, 1999;

Booch et al 1999; Felfernig; 2000, Hvam 1999)

 System theory (Skyttner 2005; Bertalanffy 1969)

 Modelling mechanical products (Hubka, 1988;

Schwarze, 1996)

The theory for modeling mechanical products and systems

theory are used for defining the structure in the PVM and the

CRC-cards, and thereby the structure of the configuration

system, reflecting the product families to be modeled and the

user requirements of the configuration system.

1

2. MODELLING PRODUCT FAMILIES FOR
PRODUCT CONFIGURATION SYSTEMS

2.1. The Product Variant Master

A company’s product range often appears to be large and have

a vast number of variants. To obtain an overall view of the

products, the product range is drawn up in a so-called product

variant master (Hvam et al 2008).

Figure 1. Principles of the Product Variant Master

A product variant master consists of two parts. The

first of these, the “part-of” model (the left-hand side of the

product variant master), contains those modules or parts which

appear in the entire product family. For example, a car con-

sists of a chassis, motor, brake system etc. Each module/part

of the product range is marked with a circle. It is also possible

to specify the number of such units used in the product - for

example, 1 motor and 4 wheels in each car. The individual

modules/parts are also modeled with a series of attributes

which describe their properties and characteristics.

Figure 2. Structure of the Product Variant Master

The other part of the product variant master (the

right-hand side) describes how a product part can appear in

several variants. A motor, for example, can be a petrol or di-

esel motor. This is shown on the product variant master as a

generic structure, where the generic part is called the motor,

and the specific parts are called petrol motor and diesel motor,

respectively.

The two types of structure,”part of” and ”kind of”,

are analogous to the structures of aggregation and specializa-

tion within object-oriented modelling.

The individual parts are also described with

attributes, as in the part-of model. In the product variant mas-

ter, a description is also given of the most important connec-

tions between modules/parts, i.e. rules for which mod-

ules/parts are permitted to be combined. This is done by draw-

ing a line between the two modules/parts and writing the rules

which apply for combining the modules/parts concerned. In a

similar manner, the life-cycle systems to be modelled are de-

scribed in terms of masters that for example describe the pro-

duction system or the assembly system.

The individual modules/parts in the product variant

master are further described on so-called CRC cards, which

are discussed in more detail in the next section.

It is normally possible to create the product variant master in

such a way that the products are described from the custom-

er’s point of view at the top, followed by a description of the

product range seen from an engineering point of view, while

the products are described from a production point of view at

the bottom as shown in figure 2.

Figure 3. CRC-card

In connection with the specification of the product variant

master and the final object-oriented class model, CRC cards

are used to describe the individual object classes (Bellin,

1997), (Hvam et al., 2003), (Hvam et al, 2008). CRC stands

for “Class, Responsibility, and Collaboration”. In other words,

this is where a description is made of what defines the class,

2

including the class’ name, its possible place in a hierarchy,

together with a date and the name of the person responsible for

the class. In addition, the class’ task (responsibility), the class’

attributes and methods, and with which classes it collaborates

(collaboration) are given.

Figure 3 shows an example of a CRC card. In connection

with the modelling of products, a sketch of the product part is

added, with a specification of the attributes of the product part.

The CRC cards are filled in gradually during the object-

oriented analysis. The CRC cards can be associated with both

the product variant master and the OOA model. The purpose

of the CRC cards is to document detailed knowledge about

attributes and methods for the individual object classes, and to

describe the classes’ mutual relationships. The CRC cards

serve as documentation for both domain experts and system

developers, and thus, together with the product variant master

and the class diagram, become an important means of com-

municating and documenting knowledge within the project

group.

A more detailed description of the individual fields on the

CRC cards is as follows:

Class name:

The CRC card is given a name that is unique, so that the

class can be identified in the overall structure.

Date:

Each card is dated with the date on which the card was

created, and a date for each time the card is revised.

Author/ version:

The person who created the card and/or has the responsi-

bility for revising the card and the card’s version number.

Responsibilities:

This should be a short text describing the mission of the

class. This makes it easier to get a rapid general view of what

the class does.

Aggregation and generalization:

The class’ position in relation to other classes is described

by specifying the class’ place in generalization-specialization

structures, respectively, or aggregation structures. This is done

by describing which superclasses or subclasses are related to

the class within either a generalization-specialization hierar-

chy or an aggregation hierarchy. Generalization categorises

classes with common properties from general to specific

classes in the so-called generalization-specialization hierar-

chies, also known as inheritance hierarchies, because the spe-

cialized classes further down in the hierarchy “inherit” general

properties from the general (higher level) classes.

The other type of aggregation is a structure in which a

higher-level class (the whole) consists of a number of subordi-

nate classes (the parts). Using ordinary language, decomposi-

tion of an aggregation structure can be expressed by the phrase

“has a” and aggregation by “is part of”.

Sketch:

When working with product descriptions, it is convenient

to include a sketch, which in a concise and precise manner

describes the attributes included in the class. Geometric rela-

tionships are usually easier to explain by using a

sketch/drawing than by using words.

Class attributes:

The various parameters such as height-interval, width-

interval etc., which the class knows about itself, are described

in the field “Attributes”. Attributes are, as previously men-

tioned, described by their names, datatype (if any), range of

values and units (for example, Length, [Integer], [1..10] mm).

It is often convenient to express attributes in table form.

Class methods:

What the class does (for example, calculation of an area) is

placed in the field of ”Methods”, which, as stated, can be di-

vided into system methods and product methods.

Methods can be described in a natural language with the

help of tables, with a pseudo code, by using a formal notation

such as Object Constraint Language (OCL) (Warmer et al.,

1999), which is a standard under UML, or by using the nota-

tion from individual items of configuration software.

3. CASE STUDY

3.1. The Industry Applications

The Product Variant Master has been applied in several manu-

facturing companies. In the following we shall give a brief

introduction to three of those companies and their configura-

tion projects, and we will discuss the experiences and lessons

learned by using the product variant master and CRC-cards for

modelling product families for product configuration systems.

Company A
Company A is an engineering and industrial company with

an international market leading position within the area of

development and manufacturing of cement plants. The com-

pany has a turnover around 1 billion USD.

A modern cement plant typically produces 2-10,000 ton-

nes of clinkers per day (TPD), and the sales price for a 4,000

TPD plant is approx. 100 million USD. Every complete ce-

ment plant is customized to suit the local raw material and

climatic conditions, and the lead-time from signing the con-

tract to start-up is around 2½ years.

The company has initiated a project on the development of

a product configuration system for the selection of the main

machines of the factory and the overall determination of ca-

pacity, emissions etc. based on 2-300 input parameters on e.g.

raw materials, types and qualities of finished goods, geo-

graphical conditions, energy supply etc. The configuration

system is meant to be used in the early sales phase for making

budget quotations, including an overall dimensioning of the

cement factory, a process diagram and a price estimate.

In the product analysis, the cement factory was divided

into 9 process areas. Based on the process areas the model was

structured hierarchically, starting with scope list and mass

flow leading to the selection of solution principles described

as arrangements and lists of machines. The product analysis

was carried out by using the product variant master and the

CRC-cards. The product variant master proved to be a useful

tool for modelling the overall cement milling processes and

machine parts of the cement factory. The product variant mas-

ter was built up through a series of meetings between the

modelling team and the product experts at the company. The

detailed attributes and constraints in the model were described

on the CRC-cards by the individual product experts.

The product variant master and the CRC-cards formed the

basis for making a formal object-oriented model of the con-

figuration system. Based on the product variant master an

3

object-oriented class structure was derived and the CRC-cards

were checked for inconsistency and logical errors. The product

variant master was drawn by using MS-Visio, the CRC-cards

were typed in MS-Word documents. The product configura-

tion system was implemented in an object-oriented standard

configuration software “iBaan eConfiguration Enterprise.”

The OOA model was derived by the programmer of the con-

figuration system based on the PVM and the CRC-cards. The

CRC-cards both refer to the product variant master and the

object-oriented class model, which represents the exact struc-

ture of the product configuration system in the “iBaan eCon-

figuration Enterprise.” The experiences are summarised in

table 1 below.

Table 1. PVM and CRC-cards in company A

Modelling tool

for domain ex-

perts – how the

PVM was re-

ceived by the

domain experts

The domain experts were engineers from product

design and project engineering. The domain

experts could easily learn the modelling tech-

niques for the purpose of evaluation of the mod-

els and input of information. The modelling was

carried out by the configuration team and exter-

nal consultants.

The possibilities

for structuring

product know-

ledge

The customer, engineering and part views have

proved to be useful when modelling these prod-

ucts of high complexity. Structuring the PVM

requires knowledge on domain theory for model-

ling mechanical products.

Visualisation and

decision making

on the product

families in focus

The Product Variant Master proved to be able to

capture and visualise the product assortment in

this case on a high level of abstraction. Need to

control the discussions to avoid non relevant

details in the model. Important to involve the

right domain experts in order to make decisions

needed on the product variants to include in the

configuration system.

PVM as a basis

for programming

the configuration

system

Based on the PVM an OOA-model was set up to

be used as a basis for implementing and main-

taining the configuration software. Easy to trans-

form the PVM to a formal OOA model.

PVM and CRC

cards as docu-

mentation when

maintaining and

updating the

configuration

system

The PVM is only used in the analysis phase and

is not maintained in the phase of running the

configuration system.

The OOA-model is currently being updated and

used in the running phase of the system. The

company has over the last 10 years increased the

level of documentation and searched for IT-

systems to manage the documentation task.

The product configuration system is currently being up-

dated and further developed by a task force who is responsible

for updating and further developing the model and the con-

figuration system in cooperation with the product specialists.

Maintaining the documentation in Visio and Word has proved

to be a tedious work, as the same attributes and rules will have

to be updated in several systems. In order to improve this, the

company has during the last year implemented an IT-system

for documentation, which means that the rules and attributes

now only will have to be entered once into the documentation

system.

The project at Company A has proven that the use of the

three views in PVM can be useful when modelling complex

products. Finally, the configuration system has been imple-

mented in two different product configuration systems. The

first configuration system was not object-oriented, while the

second configuration system (“iBaan eConfiguration Enter-

prise”) was fully object-oriented. Applying an object-oriented

system made it considerably easier to implement and maintain

the product configuration system.

3.1.1 Company B

Company B is an international engineering company that has a

market leading position within the area of design and supply

of spray drying plants. The company is creating approx. 340

mio. USD in turnover a year. The products are characterised

as highly individualised for each project.

The configuration system was implemented in 2004 at

company B and is in many ways similar to the configuration

system at company A. The project focuses on the quotation

process. During the development of the product model the

need for an effective documentation system has emerged.

Early in the project it was decided to separate the documenta-

tion system from the configuration software due to the lack of

documentation facilities in the standard configuration systems.

Lotus Notes Release 5 is implemented throughout the compa-

ny as a standard application, and all the involved people in the

configuration project have the necessary skills to operate this

application. The documentation tool is, therefore, based on the

Lotus Notes application.

The documentation system is built as a hierarchical file

sharing system. The UI is divided into two main parts, the

product variant master and the CRC cards. However, the

product variant master is used in a different way. Only the

whole-part structure of the product variant master is applied in

the documentation tool. Main documents and responses are

attached to the structure of the product variant master. The

configuration system is implemented in Oracle Configurator.

Since the standard configuration software does not provide

full object orientation, the CRC cards described in section xx

has been changed to fit the partly object-oriented system. The

fields for generalization and aggregation have been erased.

The aggregation relations can be seen from the product variant

master and generalization is not supported.

To ease the domain expert’s overview, an extra field to de-

scribe rules has been added. In this way, methods (does) have

been divided into two fields, does and rules. “Does” could be

e.g. print BOM while “Rules” could be a table stating valid

variants. The CRC Card is divided into three sections. The

first section contains a unique class name, date of creation and

a plain language text explanation of the responsibility of the

card. The second section is a field for sketches. This is very

useful when different engineers need quick information about

details. The sketch describes in a precise manner the attributes

that apply to the class. The last section contains three fields for

knowledge insertion and collaborations. Various parameters

such as height, width etc., which the class knows about itself,

are specified in the “knows” field. The “knows” field contains

the attributes and the “rules” field describes how the con-

straints are working. The “does” field describes what the class

does, e.g. print or generate BOM. Collaborations specify

4

which classes collaborate with the information on the CRC

card in order to perform a given action.

The documentation system has been in use throughout the

project period. As mentioned, the documentation system was

created by using standard Notes templates. This gives limita-

tions according to functions of the application. Class diagrams

are not included in the documentation tools. They must be

drawn manually. Implementing class diagrams would demand

a graphical interface, which is not present in the standard Lo-

tus Notes application. Table 2 below lists the main findings

from company A.

Table 2. PVM and CRC-cards in company B

Modelling tool

for domain

experts – how

the PVM was

received by the

domain experts

The modelling is carried out by the configuration

team and reviewed by the domain experts/ engi-

neers. However, the domain experts contributed

with parts of the model reflecting their special

field of competence. Easy for the domain experts

to learn to read and review the PVM and CRC-

cards.

The possibilities

for structuring

product know-

ledge

The model includes complex and highly engi-

neered products. The three views in the PVM were

used to clarify the interdependencies between

customer requirements, main functions in the

products and the Bill of material (BOM) structure.

These interdependences were expressed as rules

and constraints in the configuration model.

Visualisation

and decision

making on the

product families

in focus

The PVM was used to determine the preferred

solutions to enter into the configuration system.

The links between the three views provided insight

into the consequences of delimiting which cus-

tomer requirements to meet main functions and the

number of main BOM’s to include in the configu-

ration system. The sketches on the CRC-cards

have proved to be very useful in the communica-

tion with the domain experts.

PVM as a basis

for program-

ming the con-

figuration sys-

tem

The PVM and the CRC-cards were used as docu-

mentation for programming the configuration

system. No formal OOA model was made.

PVM and CRC

cards as docu-

mentation when

maintaining and

updating the

configuration

system

The PVM was transferred into a file structure in

the company’s file share system (Lotus Notes).

The CRC-cards are stored and currently updated in

Lotus notes. Domain experts are responsible for

updating the individual CRC-cards.

Lessons learned from the project at Company B were that

an IT-based documentation tool is necessary in order to secure

an efficient handling of the documents in the product model

(product variant master and CRC-cards). The configuration

system is implemented in Oracle Configurator, which is not a

fully object-oriented configuration system. This means that

e.g. inheritance between object classes in the product configu-

ration system is not possible. The company uses a variant of

the product variant master, where only the whole part structure

on the right side of the product variant master is applied.

However, the experiences from the project are that the revised

product variant master and the CRC-cards still secure a struc-

ture and documentation of the system.

3.1.2 Company C

Company C produces data centre infrastructure such as un-

interruptible power supplies, battery racks, power distribution

units, racks, cooling equipment, accessories etc. The total

turnover is approx. 4 billion USD (2008). The company has

applied the PVM and CRC-cards since 2000. Today, the com-

pany has 8-9 product configuration systems. The company has

formed a configuration team with approx. 25 employees si-

tuated in Kolding, Denmark. The configuration team is re-

sponsible for development and maintenance of the product

configuration systems, which are used worldwide.

Table 3. PVM and CRC-cards in company C

Modelling tool

for domain

experts – how

the PVM was

received by the

domain experts

The PVM is used for modelling the product

families in a cooperation between the configura-

tion team and engineers from product develop-

ment

The possibilities

for structuring

product knowl-

edge

Relative to company A and B this company has

a more “flat” structure in the PVM and configu-

ration system, meaning that the level of structur-

ing is lower than company A and B. The PVM

and CRC-cards is set up by the configuration

team and afterwards discussed with product

development.

Visualisation

and decision

making on the

product families

in focus

The product configuration systems are set up

after the product development project is com-

pleted. The PVM and CRC-cards lead to clarifi-

cation of decisions on product variants that

haven’t been made in the development project.

PVM as a basis

for program-

ming the con-

figuration sys-

tem

The configuration system is programmed based

on an object-oriented model made from the

PVM and on the CRC-cards.

PVM and CRC

cards as docu-

mentation when

maintaining and

updating the

configuration

system

Only the CRC-cards are used for maintenance

and update of the product configuration systems.

The CRC-cards are stored and currently updated

in Lotus notes. The configuration team members

are responsible for updating the individual CRC-

cards.

The product assortment is modeled in a co-operation be-

tween the configuration team and the product development

teams. The product variant master and the CRC cards are used

in the modeling process and document the configuration sys-

tems throughout programming and maintenance of the product

configuration systems. Similar to Company B, company C has

developed a Lotus Notes based documentation tool – called

the CRC-card database - to handle the documentation of the

models. The configuration systems are implemented in Cin-

com Configurator, which is a rule based configuration system.

Lessons learned from company C are that the need for an

IT-based documentation tool is even bigger at this company,

than at Company B. Running a configuration team with 25

employees, which have to communicate with product devel-

opment teams around the world, requires a structured proce-

dure for building the product configuration systems, as well as

a Web-based documentation tool, which can be accessed by

employees worldwide. At company C, a Notes based docu-

5

mentation tool has been developed similar to the Notes appli-

cation at company B. The documentation system has now

been running for 6 years. The experiences from running the

documentation system is that the structure in the product va-

riant master and the CRC-card database form a solid basis for

communicating with e.g. product designers and for maintain-

ing and further developing the product configuration systems.

However, the fact that the documentation system is separated

from the configuration software means that the attributes and

rules have to be represented in both the documentation tool

and in the configuration with only limited possibilities of relat-

ing the two systems to one another. This means that the confi-

guration team at company C needs to be disciplined about

updating the documentation system every time a change is

made in the configuration system.

4. CONCLUSION

The proposed modelling techniques are based on well-known

and proven theoretical elements; theory for modelling me-

chanical products, systems theory and object-oriented model-

ling. The aim of the product variant master and CRC-cards are

to serve as a tool for engineers and programmers working with

design, implementation and maintenance of product configura-

tion systems. The experiences from applying the procedure in

the above mentioned three industrial companies show that the

product variant master and CRC-cards contribute to define,

structure and document the product configuration systems.

The product variant master and the CRC-cards make it possi-

ble to communicate and document the product assortment,

including rules and constraints on how to design a customer

tailored product.

The product variant master is developed based on the basic

principles in object-oriented modelling and programming.

However, only a very small part of the standard configuration

systems based on rules and constraints and including an infer-

ence engine are fully object-oriented. In order to meet this

actual situation the product variant master and the CRC cards

have been changed to fit into configuration systems, which are

not fully object-oriented. The experiences from applying the

procedure in building configuration systems in non object-

oriented systems are positive. However, structuring and main-

taining configuration systems are considerably easier in an

object-oriented standard configuration system. Furthermore,

an integration of the documentation tool and the configuration

systems would ease the work of design, implementation and

maintenance of product configuration systems considerably.

5. REFERENCES

Bellin, D. & Simone, S. S. (1999). The CRC-card Book. Addi-

son-Wesley.

Bennett, S., McRobb, S. & Farmer, R. (1999). Object-

Oriented Systems Analysis and Design using UML. McGraw-

Hill.

Booch, G., Rumbaugh, J. & Jacobson, I. (1999). The Unified

Modeling Language User Guide. Addison-Wesley.

Bertalanffy L.; General System Theory; 1996.

Felfernig, A., Friedrich, G. E. & Jannach, D. (2000). UML as

Domain Specific Language for the Construction of Knowl-

edge-based Configuration Systems. In International Journal of

Software Engineering and Knowledge Engineering, volume

10/4.

Hubka, V.; Theory of technical Systems, Springer 1988.

Hvam, L. (1994). Application of product modelling – seen

from a work preparation viewpoint. Ph.D. Thesis. Dept. of

Industrial Management and Engineering, Technical University

of Denmark.

Hvam, L. (1999). A procedure for building product models.

Robotics and Computer-Integrated Manufacturing, 15: 77-87.

Hvam, L. & Malis, M. (2002). A Knowledge Based Documen-

tation Tool for Configuration Projects. In Mass Customization

for Competitive Advantage (Ed.: M.M. Tseng and F.T. Piller).

Hvam, L. & Riis, J. (2003). CRC-card for product modeling.

Computers in Industry, volume 50/1.

Hvam L., Mortensen N.H., Riis J.; Product Customization,

Springer 2008.

Jackson, P. (1999). Introduction to Expert Systems. 3rd edi-

tion. Addison-Wesley.

Krause, F.L., Kimura, F. & Kjellberg, T. (1993). Product

Modelling. In Annals of the CIRP, volume 42/2.

Schwarze, S. (1996). Configuration of Multiple-Variant Prod-

ucts. BWI, Zürich.

Skyttner L.; General Systems Theory, 2005.

Tiihonen, J., Soininen, T., Männistö, T. & Sulonen, R. (1996).

State-of-the-practice in Product Configuration – a Survey of

10 Cases in the Finnish Industry. In Knowledge Intensive

CAD, volume 1 (Ed.: Tomiyama, T., Mäntylä, M. & Fin-

ger S.). Chapman & Hall, pp. 95-114.

Tseng Mitchell M. and Piller, Frank. T. eds(2003); The Cus-

tomer Centric Enterprise – Advances in Mass Customization

and Personalization; Springer Verlag. ISBN 3-540-02492-1.

Warmer J., Kleppe A; The Object Constraint Language; Addi-

son Wesley, 1999.

Whitten, J.L, Bentley, L.D. & Dittman, K.C. (2001). Systems

Analysis and Design Methods. Irwin/McGraw-Hill, New

York, USA.

6

��������	�
	���
��������������	���	��
�	��	����
�

������������
���

���������������
���������	 �!���
�

�"��
���#� ��������	
� � �� ��
����
���������
����
��
� � ��� � ����

���������
����������������������������������
��
�������������
��

�
� � ������� � ������� � ��� �
����� � � � ������	 � �
� � ��� � ���
 � ����

���
����� � �
����
��
� � �
��� � ����� � ��� � �� !�"� � ��� � ���
�

���������#������������������������
����������
	��
���$����
�����

�� � �� � �
 � ����������� � �
����
��
� � ��� � ��� � ���������
� � ���

�$����������
����������
��������
���������������������

��
$�%&�'��
&$

%�������������
���
���
����
��
�����������������������
�������

���������
��
&�� � �%�����'�����	 ��� ������� �
�����
�������	 ������

���
�������������������
�����������������
��������������$�
������

�
�����!#(���
��������

%�������������������
�����������
��������
���������
��������)

����� � �� � ����������
)����� � ��
������ � � *����� � ���� � ������

������������
��������� ���������
��������������
������������
���

%�������������
��������
������� ������� ��$�
���	���������
���

���������������������)�������������
����������� �%������������������

��'��������
������
�������+,�������������������������������������

�������������	��
���

-���.�� ������� � ������ ��� � ����	 ������ ��
 � ��� ���'��� � ��$�
�����

 �
���
�����������������������������������
������������������
���

�������������
���������������������
����������)��������
��������

!
��
����

���������������
����������
������
�������
�
�����������������

������ � ��� � ��������
� � �
�������� � � ��� � �����
 � ���������

�
��
����
������������.����������
�����$���������� �%����������
�

�������
�����������������������
���������	��
����
��������������

�������������������
��-�������� �/�������������$��������������
�

���������
����
�����������
��������
�������������������
��

��������
���������������������������
�����
�������������������

 ����
 � �
� � �$�������� � ��
������ � ��� � ��� � ���������
� � ���

������ � ��������	 � ���� � �� ���!)0�*��1� � �
� �%2%2��3� � ���� � ��

�������������������$��������
���	��
�����������
��	�����������
�

���������
� � ��
������ � *�� � ���� � �����
	 ��� � ������� � ���� � ����

�����������������������.
���������
��
����
���
����
��
������
�

������
�	��
����
��	��
��������
����������
����
�	�����������
	����

���������������	��������
���
�������
��

%����� ����������� �
�������
�������
����������� � ��$����������

����������� � ��� � .
������� � �
��
����
��
4�� � � !
� � ������
���

����������������������������������$��������	���	����������������
���

����������	 � � ����� ������
��	 � �
� �����
 �� ����� � ����
��� ������

�������
��� � �%� � ��� ��$��
� � ���� �.
������� ��
��
���� � ��� � �����

�����������	���������������������������������
���
����
��
�����

��������
��������������������������������������$����������� �!
��

�����
��������������������������'������������
��������5���.��5����

���.�
� � �� � ��� � ����������� � ����� � �� � '��� � �
� � ��$� � ��������

6
��������������������������������
�����
�����������	���������
���

���������������$�����
��������.�������	������������������
���������

������������������ �*��������������
������	������������������
�

���������������
���$�������
��������

��6������������������	�6
���
	�76��,����8�9������	������	
�����:
�����
���������������	��

%�������
�����������������
���������������������;����
�<�������*��
�����
�=+*;>��
�������
��/,�
&?�@4)��

(��)
�����*�+�
�������()	����	�

7

6��� � �
 � .����
� � ���� � ��� � �����
 � �������� � ���������
��

�����	��������������A�������7�
�����
��B�����
��������=7B�>�

��� � ������������� � �
������ � ���������
�� � � +��������� � ����

��������������
�����������������
�����������
��������	���-������

�������.��
����������������������.������������������������������
�

��
�������������������
������%�����������������������
������������

������������������������������
���
����������
������������������

������ ������!
�������=�� !>��

�

#������������������������� ����������� !	����� � ������
��

���
� � ��� � �
�� � ������ � ���� � �� � ��
 � ��
���� � � ����� ����.� � �
�

.
������� � ����� � ���� � ��
 � �� � �������� � ���� � ������� � ������

�����������������������%�������������
�����������
���������
������

����������
�����������
������	��
�����
��!#(��������������!)

0�*���%����������������
�����������.�����������������������������

������������
�������������
���
�������������������������
������

�����������.������
��� �6�����������������������������
������

�����
� � '��� � ��� ������ � ����� � �� ��� !��
���������� � �����
�

����������
������������������C�������
�����������
������

%����������
�������=*�������>���
�����������������
�����
���

������� � ������	 � =�> � ������
� � �
� � �������	 � =
> � �
������ � �
��

�������
�	 � ="> � �
����
��	 � �
� � =3> � �����
�	 � �����
� � �
��

���
������
�� �#���������������������������������
������������
��

������
�	������������������������������
���������
���������� !	�

����� � �� � ��� � ������� � ������ ���������� � �
������� � ��������� � ���

��������

,��'*&

%������������������� ������!
��������"	�?������
����'����

�
��������������
��������
�������
�������������������� �%���������

�����$��
��������
������������������������
������� !�����������

�� � � � ��� � �� � � ����
���� � �� � �� � ������ � �� � � � �����
�� � ��� � ���

��������8�=�>��� !�5������5	����������
��������������	���
�����
��

�� ����������???������	 �3???��$������
�� �
�����
�������D&?�

������ �=
>�6� ��)(�����!
�������= �(!>������������������
��

�������
�� � ����� � �
� � �$���� � ���� � ����
� � ����	 � ������
��

.
�����������������������
��������
��������
��� !���#���������

��� � ���� � ����� � �� �
� � ��'������ � ���
���� � ��� ����� � ������ � ���

��
������� � ����� � ����� � �� �
��� � � 6�� � ���� � ��
 � �� � �����

=��������������> � �� � ���� � ����� � �������
� � ����� � �
 � � � ��$�
����

=���� � ��������> � ��� � ���� ���
���� � ���
 � ����� ������� � �%� �������

���
������������
���������������
����������
�5�����������5�����	�

�� � ������ � ��� � �� � .��� � �� !� ����� � �??? � ����� ����� � ������

���������������
����
�	��
���
���������
��
����������	����������

�����������
��
�	������������������������
��������������������
�

������������ ����������	 � ��	 � �� �
��������	 ������� ��� �(!��� ���

�����
 � �
������� � ="> � %���� � ��� � ���� � � � ��� � ��A�
 � �����
�

�
�������� � �
 � ������� � ������ � �
�����
� � �������� � �� � ���
���	�

���������	 � ��
�
�� � �
� � �������
�� � � %�������	 � ��� � �
���������

��������������
?	???��������
��D?	???��$������#�������������

�����������������������
�����������������������������������
�����

���������������
�������	 �����)���������������������������������

������� � �
� � ����
�� ����� � �� !� � �%���� � �
����� �E6;!�3�	�

����� � �� � ��� � ������� � �� � ����� � ����� � �� � ��������� � ����
�� ������

�� !�

�� !��������
�������������
���������#���F�����$���
�&���

�
�������������������
��� !��������������������
���
� ����� �

������ � ��� � #���F�� � ��
���� � �������
� � ����� � � � ���-��
���

�����������
�����/���
�7������D	G���������������������������

�-������
��������
��� !C���������������
���������� ������������

�-������
�����
C���$���	��
���������������
������
�����!
���������

��������������������
�,
�����������������
���������������������

����
����
	�����������������������������.���������-������
����

�� ! � ������ � ��� � � � ���
�����
� � ��� � �� � ��
����� � ��������

��
��
������
����
��������

�������������
���������
���������
������	��
�����
��
�
)������
�

��������������� � �%������
������6�����	 �*��
��	 �,
�����	 �7A���	�

%������	�;����
	�������
	�H�
��	�<���
��
	�7��
����=��������
���

�
� � ���������� � ����������>� � 6������������ � ��
������ �
�������

��
��������������������
�������
��
��������������������
��������

�����
�������������
����*������
�

%�.�������$�������������������������!)0�*��������
�������

(authors Dickens OliverTwistBook)� � � #� � ���� � ����

�������
� � �������
�� � ���� � ���� � ���
 � ����� � �� � ������� � ����

����������
������������
���������������������������
�
(format EnglishLanguage authors "%1 is %n the

&%author of %2")

(format it authors "%1 è l' &%autore di %2")

���������������������������������
��������
��
���.
��������

����	��
��,
������������������������������
�����
	�������������������

5+��.�
�������������������!������%�����5�
�$�����������!)0�*�

�������
�������������
������������	������������������������5+��.�
��

I � �C������ � �� � !����� � %����5� � � 6�����
�� � �� � ���������� � ����

��������������������������������J�	�J
������������������������	�

������
���������������$�������
����������
�������������������

������$����������$�������
��

%�� �;����� �#���F�� � ������ � �4	1� � ��
.� � ��$���
� � �
 ���
��

��
������	��������
������������������������������
�����$���
�

���������
��������������
���,
������#���F��� �#���
���������

������
��������������������3?���
�������� �%����������������

�����)��
������� � ��
.�� ���� � �
������ ��� !���� � ��� �������� ����

���
� � ��� � ����� � ��� � ���� ����. � �
 � ��
����� � ���
������
 � �
��

��
�������� ���
������� � �6 � ������ � ���� � ��� � ��.�
� � ����
���� ����

���� � �� � ���� ����. ������ � �� � �� � �$��
� � ��� � ��� � �� � ��
������

���
������
�������
������������������������������� !�

�� !��������
����
�������!)0�*���
�������1�	������������

�����������������������
���0
���������
������
���*������
?��

#��
��������.� �
 � ���� ������ ������ �� �5������ � ������5	 ����

���
��� ������	 ����������� !	��
��������������
�
������
��

������������
��
�����������$������
�������������
���������������

����������� ��
���
�����	��
��
��
��������
������	���������������

�
������������ ��������� �� �����
� �
������
���� ��
������
��
���

����� � �
 �
������ � ��
����� � ���� �
����	 � �� �
������ � ��
������

����
����
��

-��%&.�
$/��	���
����0

���������������
����� '�������������������� ���������
��	 ��
������� �

��������������������
����
��������������
���������
.�����������

�����������$������������� ���
���
�������������� �����=*�������>��

7���.�
���
���������
����
����������������
.����������������������

�$������������
���
�����
����������F�$�����������$�����������
�

����������
����
�=�>������������$��������������
��6���	�����
����

�
�����������������
�������
���������
�������������������������

�$�����#�����������
��������
������
������
�
����������������

������
����	 � �� � ���
� � ���
�����
� � ����� � ���
 � ���� � �� � � � �����

�
������	��
����������	��� !�� ������������������.������
�����

�$��
��������
����
�������������������
�
�������.���
��������
��

��������������.��
���
��������
������
����
�����������	����
�����
��

���������
� �����������������
������ ������� �����������
�� �
�

����������
� � �������
�� � ����� � �����
� � �
� � ��� � ���������
�� � �
�

�����
��

8

�
 �
??G��������� �� � ���������� �������� ������ ���� ��������

���� ������������ � ��� ������ �������� � ���
�����
�
�� ������������

�������
������������
���������
�����������������������
�
��������

�������������������������������������
�������
�����
�����������
��

�
������������������������	���������
������������
�������������
�

��������������
�	 ��
����
����
��������
� ����
������� ��
������

�����������������
���

�������
������������������������������� ��
���
�����������
��

�
�������� � ��������� � �
 � ����� � ��
������	 ��� !���� � ��������

�������������������
����������������
�A���
����������������������

%������
�����������������������������������	��������
�	�����������	�

�����������
�����������6������	����������������������������������

�����������
�����
���������
�����������
����������
.��������������

�����������������������������

1��$��0�
���	�����'//
$/

�������
�������� �
�����������������A����
����
����� ����� �����

�
����
� � �
������ � -������� � � %�� � �������� � ���� � ��� � -�������

����.�
���
�����������
�����������������������
��� �H������	�

���������
��������������������������������
������)��
��������)������

��������	 � � � ������� � ������ � �� �
�� � �����
���� � �� � ��
� � ����

��
���������
��������$����������
�������������������	���������������

� ������
����
��� �������� ��������� ����� � ���� ���� ���������	 ��
��

��
������������������
������������
���������

#����������������������������
���
������������
��������
	����

�
������������
��

���� � ���
�� �� � �� � ������	 � �
� � �
������ � �
 ������� � �#���� � ����

����� � �� � �������� � ����� � �� � ����
������ � �
��
���	 � ����� � ��� � ��

��������������
��

�����.����%���
�

������

%����� !)#���F��������
�������������������������
�������

��
������������$����������������
�����
������������������� �#��

������� � ���� � ��� � ��� � ����������� � ������ �
���������� � ���

����������� �6 � ������ � ������ � �� � � � ����
� �
��
����� ��������	�

��������������������
��
��	��
����������
���������������������

�
��.�
�����������������������
�A�����������������������6��������

���������
��������
���
���
����������������
�����$�����A����
��
��

��
������ � �%��� � �� � ���������� ��������� � �� � ��� ������ � ������	 � �
 �

��������
�������������
������������������������������������

���

�����������������������������������A����
�� �/��
�����������������

����������������	����
�
����������������A���������
��
����
���
�

(��)
��,��������"
�2��	����
��	

9

���������	�����
��������
�����������������������������������	��
��

��.�� � �� � �������� � �� � ���� � ��
������� � ����� � ��� � �����	 � �
��

�������
�������������
�����
�������������
����
���

%���#�����������������

����������������
������������������������������������,
����	�������

�� � ��� � ������� � ����� �
 ��� !�� �%��� � �����
��� ������� � �����

�������������
�����������������
���
����������
�����
�����
�
����

��� ����	 ��� �������������
�� ����
������ � ���� �
��
��������
��

������%�������
��

����
��� �������������
������������'��
�� � � �
��� ���������������.��

�� !	������
���������������������.�������������	���������������
�

��� � ���������� � ��
����� ���� � �� � ������
 � ����� � ���� � ��� ���
��

�����������
������������������������

%����������������
�����������������������������������
���������

�� � � ��������	 ���� �
�� � �������� ��
 ������ � ���� ������ � ������ � �
 ���

������� � ��
���������
� � �%�� � ����� ��� � ����� � �� � ��� � ����� � ���.�
��

������
�����
����
�����������
������
��������
	�������������������

����������������������
���
�������
���
�������
������	�����������

������������������������
��
���
���	���.�������
����	 �����������

�����
����	 � ���������	 � �� � �$������ � ��� � ���� � ����� � �� � ���.�

������
�����
� � �/�� � ���� ����� �����
 � ������� � �
 ��������� � �����	�

�������������
���������������������������
�����������
�����
�

����
����
	�����
�������������$����

#������ ����������������� ���������
���������� �
 ��
�������� �

%��������
���������
��
����������
������
���
��)�����������	�����

�
����������������
�������	������������������������������������
��

���������������
��
�������
�
���������������������������
������

���������������	�������������������
�����.�������������������

/�������.
����������������������
����������������� !C��

��
���� � �
� � �����
 � �������� � �����
�
� � �
��������	 � �� � ���

��������� � �� � ����� � ����
��
���� � ���
� � ��� � ����� � �� ����� � ���

��������� � � *�� � ���� � �����
 � �� � �
����� � � � ���� � �� � ��������

����
��
���� � ������
 � ����� � �� � ������ � � �� � �� � ��������� � �����

�����������������������
��������������
��
����������
���������
��

���������
�����	��
��
���������
��������������6��������
������������

��������������
��������������
��� !�������	���
���������������

��
�����
������������������������������������
����������������������

��
��
��
����
���������
�������
����
���

+���
������������������������������ !)#���F��������
����

��������
���#���F�����
����������������������������������
��

���	��������
������
���
�����

�����
���������.
�������������� �%���������������
��������������

����� � ���� � ���
 � ���
��� � �� � ��
���� � �
� � ��� ������
�� �
���

�������� � � ��� � ���
�����
� � �� � ��� � ��$�
��� � ���������
�

�����
�
��� �;���
��������������������6��
��/��
��� !��
��

��
�����K��
��E��
�#���F��	����6��������������K��
��/����E	�

����������.�������������/������������������6����
�E�����������

����
������K���%����������������������������.����������
����������

��������� ������������������������������
�������� ��� !�������

��������������������������
�����
�#���F��	�������������������������

��������
�������� �6���
����������������������������
���
��������

�������
� � ���� � ��� � �������� � �����
� � �
 � ��
������ � *�� � �$�����	�

#���F�� � ��
������ � � � 5�������5 � �� � �� � � � 5����
5	 � ��������

�� !���
��������������� �������
����������
����������
	 ��
��

�����������
��
����

������������������

3�
$(�%�$��

��
���
??"	�����������������
����
)������	��������A���������
�

�������B�����������������������������0�*)B�������� �/�������

�� ! � ��� � ��
���
�� � � � ������� �
����� � �� � ������)������

��
�������	��
��B���������������������������������������	���������

�����������
������������)��������
��������������
�������� !�

�
��
�����������
������B�������

=�
���������������>���
���
�����%������������
������=�>�������
��

��� � ���������� � ��� � ������
� � ��������� � ���� � ��� � ����������

�������
��!�������������������������������5�����5��������������

��� � �������� � �%��� �������� � ��������� �
 ���������������
�� � ����

���������������������������
��$�
�������������������������������
�

�������
� � ��� � ����� � ������ � � %�� � ����
� � �������� � ��� � ���

�
���
��

������������
�����.
��
��

����������������������������$������*����$�����	

�
������������
���$���	������$��������������������������������

���������L<,(����
���
���
������������������%��
������<������
�

(<=>

 (instance ?REL TransitiveRelation)

 (forall (?INST1 ?INST2 ?INST3)

 (=>

 (and

 (?REL ?INST1 ?INST2)

 (?REL ?INST2 ?INST3))

 (?REL ?INST1 ?INST3))))

%�������������
��
������������$��
���
��������
����������$����	�

���������������������������
�����!
�����������
�����������������

��������
��

���������������$����
���
�����.
������������	�����������
���
��
��

�������������������������������

�
 � �����������
� � ���� � =
> ��� � ���
 � �������� � ������ � ������

����������
����
�
�����������������������������%�����������������

�����������
��������������������
��	��
�����
����������
��������

�����������������	������������������������������
��������
	���������

����
�������������
������������������������
�
���
��������������

��������
����
������=">� ����������
��������� !������������������

��
����
���
�������
����������������-���������0�*)B��������*���

�����=3>����
����������� !��
�������������������������	�������

��� � �.�
 � �� � ��� � (��2 � M<,�% � ������
�� � ��� � ��������)������

��
����
��� �#�������������������5�����5��
���$��
��������$����

���� � � � ��� � �������� � �
�� � ������� � �$���� ����� � �
� � �� � ����
�

��������������������������
������������������������
�������������� �

�������$���������������������������	��������
���������
�3G�
���

�$�������%�������������������
�������������������������	������
���

�������������������������
���
����������

��
��������������.�����������������������������
��������

������	���������
������
�������������������������-��
��������
��

���B������	�����������
������
�������	��������
���
��
��
����
���

�����
�
����������
��

��������� �������� �#����������.������ �
�������� ����%2%2#�����

����� � ���� � ��� ���
� � �������
� � ������� � �������	 � ��� � �������
��

�
��� � � � �����
 � �
���������
�� � � %�� � �������
� � ������� � ���

��������������������
����������
������������������	��
����������

�����������������	�������
������������
�
���������-�����������

���� � �$������� � ���
� ����� ����� � ������� � � �� � ���� � ������ � ����

���������� � �� � ��� � ��� � ������� � �� ��� � ���� � �� � ��
 � ��� � ����C��

�
����
���	���������
������
��������������������������
��������

�����������������������������������
�

�
��������
 ����� � %2%2 � ����� � � �
�� � ����� � ����� � ��
������

�������������������������
������������
���
�������$������"��� ����

����������������������������
�����������
������������
����6��������

�� !���������������
������������������
�	���������������������
���

������ � � %��� ����
� � ���� � ������� � ����� �
�� �
���������� � ��.��

10

����
�����������������������
���
�������
��������������������	��
�	�

�
 � ������
 � �����	 � ����� � ������ � �
 � �
������� � �
����
���	 � ���
�

�
��������������������������������
���
��
���������
�����-��������

6���������������������������������
�������������������
�����
�

��
������
���������
�������� !C�����������������
�	��������
���
�

�
 � �
��
�����
� � .
������� � ����� � �%� � ����� � ���� � �������	 ����

����� � � ����)��������� ������ � ���� � ���� � ����������
� � �� � � �
���

�����
�����
���������������� �%��������������������
��������������

�����������
�����������������������������������
��������������������

������������������������������
��������������
��
���������
��$����

7����
�
��������������� ���
������
��� � ���������������
���
�

�$������������������������������
������%2%2���
������������
��

�� ��� !������������ �� ������� !)������������ �
� �����������

76�7�����������
��3	�&�	���������
����������������������������

������.��
��������������
������������
���������
���������������

����������
��������
����
�����������������������������������
��

�
��������������.
������������	��������
�����������
���������

�$���������������
�����������
�-������6�.�������
���

������
����

������ !��
����
���,
��
��=��
,>���4������������������
�������

�����������$�������.����������������
������������
�-�����

6
����������
���

������
�����
����
�����
���� !������������

������ � ����� � ������G� � ��� � ��� � �� � ���� � ������ � ����� � ��������

����������D��%����������� ��������.���� �������������������������

���������������
��� !	��
�����������	��������������������
��

����������������

6� � ��� ����
������� �����
������ ��
�� �
����
�� ��� ������ ����

��
���� � ���� ��� ����
� � �������������
� � �� � ��
� ���
���������
���

/������������������������
�����
��������
����������
���������������

����������$���	��������
�����������
�����
�������.���
����
������

������������������������������
������������$�����
���.
��������

������ �,�����$���������������
������
��������
��������
�������

.
������� � ����� � � *�� � ���� � �$���	 � ��� � ������ � �� � ��.�� � ���

���������������������.
���������������
��������������$���	����

�������
��
��������������������$��������
C�������������
���������
	�

�� � �� � �������� � �� � ��� � .
������� � ���� � �
� � ��� �
�$� � �$��� � ���

��
��������� �6���
���������
�������������������
�	���
����
�����

��
���������
�������
�	��
�������������������������
�
��
�������

<���
��
���� � ��� � ��������� � �
� � �������� � �
�� � ��������
��

��
������

������� � �� � ��� �76�7�����������
	 � ��� ��
 � � ����� � ��������

�����	�������������������������������
��������������� !)������

����� � ��� ��
� � �������������� � �� � ��������	 � �������
��������� ����

���������
�������������.�
��
�����������

4�*���
$/��*�%/
$/��	���%�$����
&$

�
��������
������!)0�*��
��%2%2���������
������������
��������

!#(� ������ � �
��� � ��
�� � ��
� � ����������� � �
�������� � ����

�����
�������
�����������
�!#(�����������������
����������������

����� � �� � � � ����� � �����
���	 � �
� ��������� � � � ����������������

��������
����������������������
�����������
���������������������

�
����
���� ������������
������������������ !�����������
����

����������������������������
��������
����
��	���
����� !���
�

���=�
����>��$�����������������������
������
�����
�!#(�������
��

#������������.���������� !��$���������
�������������$����������

�
�!#(��������
�����������
���������������
���=�
���
������

�����$��������������
)��������������
��>����������������������

����
� � ����� � ��� � ��� � ����
 � ���� � ���
 � �� � ���� � ���� � �������

��������

#� � ������ �
��� � ���� � � � ��
���� � ���������� � ����
� � ����

��
��������
������ !�����
��������������������������������������

�������
�-�����������������������������.
���������
��
����
������

�������
� �
����� � �� ��� � ������ � �� � ������� � ��� � ����
���� � �� � � �

��
����	������������������$����������
�������������������%��������

����������
���������
���������������������������
�
�����������

����������������������������
������ ���C���������������������������

����������$��������
�� � �
 ������ � �� ������������� ����
���� ��� �

���������������������
����
��� � ��� ��� �
�����������	����������	 ����

���������������������.
���������������
��
������������
����$���	�

�
�� � ������ � �
����
�� � ������������ � ������ � ���������� � � %����

����������������
������
�������������������.�����
��������
�

����������������������������
�
��

������������
��������
��$���������������
�2�������������!
���

��������
���������%2%2�������
�����
��
������	�����%2%2#�����

�������������
���������
������
����2�����������������������
��������

�������%��$�����
��

�N(� �������
�� � ��� � �������� � �������
 � �
� � ���������
 � �����

������

%�� � �����
� � ������������ � �
� � �������� � �� � ������������

��$�
����� � ���� � ����� � �����
 � �������� � .
�������	 � �
� � ����

��������
��
� ����
���
�
 ��� � 5��
.�� �����5 � �� � � � �����
����

��'������������
��������������������
�����
��
������������
��

�
�������
�������������������������������������
������������.��
�

� � ���
�)���
� � ���� � �
"�� � � �
 � �����
� � �� ! � �� � �������

��$�
�������������������
��������������
��������
��������������
��

������� ����������
������ �������������� ��$���� � �%������
������

������� � ������� � �� � �� � ������� �
������ � �� � ����� � ���������

����������6���
������������ �

����������������������
�	���
����������.�����������������������
�����

������
��
��������
������������������� � �H���
������������
��

��������� � �
������� �������� � �� �������������� �������� � ���
 ��
�

�
�����
����� ������� �������
�������������%���������������
��

���� � ��� � ���
 � ���� � �� � ������ � �
 � �
����� � ����
��
� � ���� � ��� �

����������� � !��
 � /��������� � !
�������� � =!/!> � �
3� � �����

��
���� ���������� � ��$�
����� �������
�	 ������
�� ����� � �
�� ����

�$������������������������������

5��'**�%0��	���&$��'�
&$�

������������������������
����������� ������������������������

��������������������������������
����������� !�� ������������� �

����.�� � �
� � ������� � ���� � �� � ���� � �� � ������� � �$������
�� � �
�

�
������ � ����������
 � �
� � ������� � �����
�
�� � � ����� � ��� � ��)

��������������� !�����������������
����������������������
��

�$��
��������������������������%��������������
�������������������

�������������������
���������
��
��������������
�-������������

��� � �������� � �
� � ���������� � ����������� � �
� � ���������
����

�
�������
��
������	�
���������
�������
������
��
���
���������

�����
�
��

%�(�%�$���

�����������������������8@@�����.���������������
��

�
��2����	�6�	�=
??">��%���������!
�������+��������
��,
����
��
�	�

�
 �#��.�
��F���� ��� � ��� � �O76�)
??"�#��.���� ��
�!
������ ��
��

+���������� ��������� �B����� �D� ��� �7,�<�#��.���� �2�������
��

��������

�"��F����	���	�P�2����	�6�	�=
??�>	�%�����������
�����������!
������	��
�

2�������
����������

���
���
����
���7�
����
����
�*������!
�������

�
��
��������
���������=*!��)
??�>	�7�����#������
��/����������	�

����	���
)1�

11

�3����� ���	�;�	������
�.	�*�	��
��2����	�6�	�=
??G>���
�������
��E6;!�

�
����������������������� ������!
���������
�2�������
����������

?�� � �,,, � �
���
����
�� � 7�
����
�� � �
 � %���� � ���� � 6����������

�
�������
���=�7%6��
??G>���,,,�7���������������	�(���6�������	�

76	���6��

�&��F����	 ���	��
��2����	�6�	�=
??">��(�
.�
��(�$���
���
��!
��������8�

 ����
� � #���F�� � �� � ��� � ��������� � ����� � ����� � !
������	�

2�������
�� ��� � ��� � �,,,� �
���
����
�� �7�
����
�� ��
 � �
��������
�

�
��0
��������,
��
����
�	����3�
)3�4��

�4��2����	�6�	��
��*�������	�7�	�=
?�?>�*������!
�����������
�����
���8�

%����� !��
��#���F���(�
.�
��2��'�����
��;�����#���F��	��
8�

H��
�	 � 7� � <� � �� � �� � =����> � !
�������� � �
� � (�$���� � <����������

7��������8�7����������
���������2����	���/F)�"8�1DG?&
�GG4&1G��

�D� � 0����� � �
� � *��
���	 � #�F� � =�14D>� � 7���������
�� � 6
������ � ���

2����
�)+���6������
�,
�������2������
��8�/���
��
���������2�����

�G��(�
������	�(�����.�7�	��
��%�
��	�<����=�11G>�Q/�����
������
����

��
�����
���R���
�*�������	�7��=���>�=�11G>�#���F��8�6
�,������
���

(�$�����+���������7���������= ����>8�%��� �%�2�����

�1��;������#���F����������������8@@��������������
������

��?���� !��������������8@@�����
����������������

���� �H����	 �2�	 ��
�� �
A��	 �7�	 � =
??�>� �6�����
���� � ��� �0
��������

�
������
���*�����	��
�#��.�
��F�������������O76�)
??��#��.�����

�
������,,,����
�����������!
�������

��
� �%���	 ���	 ����������	 �;�	 � �
� �2����	 �6�	 � =
??G> � �
��������
 ��� � ����

%2%2#������
��������0,,��2�������
�������O76<�C?G�#��.�����

�
 � 2�������� � 6������ � �� � 6�������� � <����
�
� � =266<)
??G>��

B������"D"��������7,�<�#��.�����2�������
����

��"� �2����	 �6�	 � �
� ����������	 �;�	 � =
??D> �*���� �!���� �<����
�
� ��
���

(���� � !
������	 � �
 � 2�������
�� � �� � ��� � 76+,)
� � ���.���� � �
�

,���������� � ���������� � 6�������� � <����
�
� � �
 � (���� � %��������

=,�6<(%>�

��3�������������;�	�=
??D>�%2%2	�%�%2	�76�7	�������
�B��+��.���	� ��

B��.��	 � �
� � 6� � B���
.��	 � �������	 � (������ � F���� � �
 � 7��������

����
��	 � ����
��� �/����
 � @ �H���������	 �B����� � 3431@
??D	 � ��/F�

1DG)")&3?)D3&?1)1	����4)

�

��&� �2����	 �6�	 ����������	 �;�	 �������	 �F�	 � �
� �%���	 ���	 � =
?�?>� �(�����

%����� � <����
�
� � ���� � �� ! � �� � 76�7	 � 6� � 7����
������
�	�

B������
"	�F������
)"�@�
?�?	����������������
�2���������6����������

6���������<����
�
�	��!��2����	����F�?1
�)D�
4	�����"D)�33��

��4��H����	�0��=
??G>�6���������<����
�
���
�(�����0
��������/����	�

2�+ � ������	 � 7������ � �
��������	 � 2�����	 � 7A��� � <�������� � ����

����8@@�����
���A@�
�@�������@����S��@�
��$����L

���T������P���T31?&

��D� �/�
A�U����	 �7�	 � �
� �2�����	 �6�	 � =
?�?>� �2������� � �
 �6�������
��

H����� � !���� � !
������ � <����
�
�	 � 2�������
�� � �� � ��� � ����
��

�
���
����
�� � #��.���� � �
 � 2�������� � 6������ � �� � 6���������

<����
�
�	 � /���� � 0�
�� � �
� � <�
��� � 6� � ������� � �
� � ������
�

�����A	 � �������	 �,��
�����	 ��0	 � O��� ��3	 �
?�?	 �7,�<�#��.�����

2�������
���

��G�����������	�;�	��
��/�
A�U����	�7�	�=
?�?>�6���������<����
�
���
�

H�����)!�����(��������
������9%2%2�%H*:��
������������	�O���
������

*������A���<����
�
�	�����"	�
���	����)
D�

��1� � 2����	 � 6�	 � =
??1>� � ���
���� � ����� � !
������ � 0
��������

�
������
�� � *�����	 � ����� � 4@�G@
??1� � 6�������� � ���

����8@@�����.�������������������
��@V����.���V@�����.��@�����@���)

.������

�
?� � ;�
�������	 � �	 � =�11�>� � Q0
������� � �
������
�� � *�����WW	 � �
�

2�������
��������������
���
���
����
���7�
����
����
�����2��
�������

�� �0
��������<������
�����
��
��<����
�
�	 �6���
	 �O�	 �*�.��	 �<�	�

��
������	�,��=���>	� ����
��0�����
�2���������	����
"G)
31�

�
�� � ���
 � /��������	 � *��
. � ��
 � H������
	 � O���� � 6� � H�
����	 � ��
�

H�����.�	�+�������(�� �;��

���	 �2�����*��2����)���
�����	�(�

�

6
���������
�=6����>	� �.��+��
	�;��������������=,��>	�!#(�#���

!
������ � (�
����� � <�����
��	 � #���� � #��� � #�� � 7�
�������	�

<������
�����
�<,7)���)���)
??3?
�?	�*��������
??3��

�

��2����	�6�	 ��
��/�
A�U����	 �7�	 �=
?�?>�!
�������6����������8 �6�

+����� � �� � ,����� � �
 � ��� � ��������� � ����� � ����� �!
������	 � �
�

2�������
� � �� �%�� �,76�)�? �#��.���� ��
 �6�������� �<����
�
��

������7�
��$���
��!
�������,�������
�=6<7!,)�?>	�6�/�
����
��

O�(����

 � �
� � ;�N� � �
� � ��O�B��A�
�A�. � �������	 � 6����� � �4)�D	�

(����
	�2��������

�
"��(�	�O�	�=
??3>�(! 8�6�(�$���
)������!
������� ����
��%���	

� � � �
 �2�������
����� � ����2�������
��� ������� ���� �
�������
� ���������

��
����
����=2�� ��>�

�
3� �������/	 �6�����
�� � 	 �<���� �7	 �/����7	 �/���#	�7������� �#	�

;������� � (� O	 � ,�����. � 0	 � �����
� � 6	 � �
���� � 7 � O	 � %�� � !/��

7�
�������	�(��
����F	�<����)������2	�<����
�����6	���
��
���)6	�

���������

�<�H	������F	�#���A���2�(��
��(�������=
??D>��5%���

!/! � *��
���8 � ������
���� � ��������
 � �� � �
�������� � �� � ��������

�����������������
��������
5	�F������/������
������
&	��
&��)��
&&�

�
&� � E��
	 � ��	 � �
� � �(���	 � +� � !
������ � +��������
� � %���� � ����

!
������)/���� � 0
������� � �
�����
�� � ,
���������� � �� � ,)

7�������	�,);����
��
���
�� ������7�������	������;������
��	�

??4��������������������������������

�
4� � +���� � 6���
���� � 2���� � ;�
����8 � 6 � ;�
���� � %��� � ��� � 2�����

+��������
�� � %���� � �
� � 6��������� � ��� � ��� � 7�
��������
 � �
��

6
�����������������	�2����%676��
???	�(F7���DG&��

12

Abstract

Characterization of configuration problems has
remained limited. This work characterizes 26
configuration models with numerous indicators of
size and degree of application of modeling
mechanisms including inheritance and application
of advanced compositional structure. The original
goal of modeling was to evaluate and demonstrate
the applicability of WeCoTin configurator and
PCML modeling language to industrial
configuration problems. The main contribution of
the paper is in providing probably the first multi-
faceted detailed characterization of a relatively
large number of configuration problems.
Additionally, aspects for characterizing
configuration models were identified.

1 Introduction

Due to active research in the configuration domain, several
formalisms for representing configuration knowledge have
been proposed, and configurators are used to support day-to-
day business in many companies. However, characterization
of practical configuration problems has remained limited in
the literature. Of course, a number of individual cases have
been documented thoroughly, most importantly the
R1/XCON [Barker, et al. 1989] and the VT/Sisyphus
elevator configuration problem [Schreiber, et al. 1996], not
forgetting characterizing the domain and configuration
models when describing configurator implementations, e.g.
[Fleischanderl, et al. 1998]. Further, classification of
configuration tasks has been proposed [Wielinga, et al.
1997, Haag. 2008], which requires characterization of the
tasks as a basis for classifications.

There are several reasons why configuration tasks should
be characterized. These include enabling evaluation of
effectiveness of specific representation formalisms and
modeling constructs, gaining understanding on the nature of
different configuration tasks, which in turn could enable
supporting tools that better match practical problems and
facilitates development of benchmarks, and enabling
classification of configuration tasks. Configuration models,
related configuration tasks and their IT support could be
characterized from several perspectives. These include the

size of the models, computational performance, and
complexity, effectiveness of specific modeling techniques
related to specific configuration tasks as defined by the
company offering. Less technical views cover aspects of
practical interest such as the proportion of cases covered by
the configuration models, completeness of the models in
terms of business requirements, usability and different
aspects of utility provided and sacrifices required.

This work reports a part of evaluation of the WeCoTin
configurator [Tiihonen, et al. 2003] and especially its
modeling capabilities. 26 configuration models were created
to evaluate and demonstrate the applicability of WeCoTin
and PCML to real industrial configuration problems, which
demonstrates the high-level efficacy of the constructs. The
models will be characterized with numerous indicators of
size and degree of application of different modeling
constructs. Five tables provide characterizations models.
This paper is structured as follows. In Section 2 the applied
modeling language will be described. Section 3 gives an
overview of the configuration models and their background.
Section 4 describes component type hierarchy, overall
configuration model size, and price modeling. Section 5
details the compositional structure of the models, Section 6
attributes, and Section 7 constraints. Finally, discussion,
future work and conclusions are presented in Section 8.

2 Product Configuration Modeling Language

The configuration models have been modeled with PCML
(Product Configuration Modeling Language) [Tiihonen, et
al. 2003, Peltonen, et al. 2001]. PCML is object-oriented,
declarative and it has formal implementation-independent
semantics. The semantics of PCML is provided by mapping
it to weight constraint rules [Soininen, et al. 2001]. The
basic idea is to treat the sentences of the modeling language
as short hand notations for a set of sentences in the weight
constraint rule language (WCRL) (Soininen et al. 1998).
PCML covers a practically important subset of a
synthesized ontology of configuration knowledge [Soininen,
et al. 1998].

The main concepts of PCML are component types, their
compositional structure, properties of components, and
constraints. Component types define the parts and

Characterization of configuration knowledge bases

Juha Tiihonen
Department of Computer Science and Engineering

Aalto University
Juha.Tiihonen@tkk.fi

13

Model Company & Description

 Status and validation

1

Compre

ssor FM

 Gardner Denver. Compressor family FM series. 18-40kW compressors. Internal view for sales persons. Demonstrated integration

to automatic manufacturing completion (EDMS2), and e-commerce site Intershop 4. Delivery time calculation.

 Complete model. Demonstrations to company with expert and focus group validation on matching company view of product

configurability. Company workers had a few dozen configuration sessions over the web. Model used in empirical performance

testing. Manually analyzed the number of possible configurations, which matches the number of answer sets (configurations)

generated by the inference engine.

2Compr

FM sc

Gardner Denver. Model 1 Compressor FM above augmented with 13 pre-selection packages to represent agreed-on customer

standards with their defaults, usually enforced with soft constraints. Behaves as intended.

3

Compr

FS

Gardner Denver compressor family, 11-18 kW FS series compressors. Internal view for sales persons.

 Complete model. Demonstrations to company with expert and focus group validation on matching company view of product

configurability. In addition, company workers had configuration sessions over the web. Model used in empirical performance

testing. The manually analyzed number of possible configurations matches the number generated by the inference engine.

4

Compr

FX

Gardner Denver compressor family, 4-10kW FX series compressors. Internal view for sales persons.

 Complete model. Demonstrations to company with expert and focus group validation on matching company view of product

configurability. In addition, company workers had configuration sessions over the web. Model used in empirical performance

testing. The manually analyzed number of possible configurations matches the number generated by the inference engine.

5Compr

FL

Gardner Denver compressor family, 45-80 kW FL series compressors. Internal view for sales persons.

Complete model, seems to work, no validation in company.

6Compr

M

Gardner Denver compressor family. 75-160kW M series compressors. Internal view for sales persons.

Complete model, seems to work, no validation in company.

7

KONE

old

KONE maintenance service contracts, older company offering. Some additional options that can be specified after contract made

(billing options, e-notification). Some one-time service extras like long-term maintenance plan, condition check. Extensive on-

line help texts for salespersons developed together with company, shown with the description mechanism.

 Complete model with extras. Demonstrations to company with expert and focus group validation on matching company view of

product configurability. Installed to product manager computer for test use.

8

KONE

new

KONE maintenance service contracts. Options of newer maintenance service contracts. Additional options that can be specified

after contract made (billing options, extensive e-services). Some one-time service extras like long-term maintenance plan,

condition check. Extensive on-line help texts for sales persons.

 Complete model with extras. Demonstrations to company with expert and focus group validation on matching company view of

product configurability. Installed to product manager computer for test use.

9 Bed Not public 1. Real hospital bed product line based on order forms and additional information.

 Complete model. Demonstration to company and focus group on matching company view of product configurability.

10Firep

lace

Not public 2. Modular fireplace. Technology demonstration with CAD vendor. Simple product. Integrated with 3D CAD to

visualize configuration changes. Complete model. Validation with CAD vendor.

11

Patria

Pasi

Patria Vehicles. Military vehicle. For company internal systematic documentation of available productized options.

 Complete model with respect to standardized offering. Demonstrations to company with expert and focus group validation on

matching company view of product configurability. Configuration model validated in internal test use in company.

12

Dental

Not public 3. Real integrated dental unit and patient chair. Most difficult to configure product of the company.

 Complete model. Demonstration to company, brief focus group, expert validation.

13 X-

ray

Not public 3. Real X-ray unit for dentists. Product designed with ease of configuration in mind.

 Complete model. Demonstration to company, brief focus group, expert validation.

14

Vehicle

Not public 4. Self-moving machine industry product. Real product based on order forms and interviews. Partial model for

demonstration purposes representing about half of the sales view of the product. Numerous optional parts and some simple

constraints were excluded. Despite omissions the model reflects quite well the nature of sales configuration of this vehicle.

 Test-used by company stakeholders over the web. Functionality found satisfying "better than our commercial product". The

manually analyzed number of possible configurations matches the number generated by the inference engine.

15 Insur

1

Tapiola group. Insurance coverage for families (persons, travel, car, home, cottage) as a combination of insurance products.

 Demonstration model with a subset of the whole offering, Discretized large domain specification attributes.

 Demonstrations to company.

16 Insur

2

Tapiola group. Comprehensible insurance coverage for family's person related risks. Non-traditional risk-oriented (not insurance

product oriented) way of asking which coverage is desired. These selections are satisfiable with a combination of real products.

Mapping to products not performed in model.

 Demonstration model. Demonstration to company and focus group.

17 Insur

3

Tapiola group. Experimented 4-world model objects-world questions. Solution-world with detailed model of real offered car-

related insurance coverage. HUT internal, no company validation.

18 Insur

4

Tapiola group. Comprehensive insurance coverage for families and property. Tested some 4-worlds model ideas. Objects:

persons, home, leisure-time apartment, vehicles (cars, motorcycle, boat), forest, domestic animals (dogs, horses, cats). Solutions

corresponding real insurance products and their availability, modeled in detail. However, risks coverage for home and cottage is

selectable with excessively small granularity. HUT internal, no company validation.

14

19 Mob

Subscr

1

Elisa (Radio-linja). Demonstration on configuring mobile subscription and its value-added services while taking into account

phone capabilities. Model covers only aspects considered interesting for the demonstration. Information acquired from public

company web-site. Demonstration model, demonstrated to company stakeholders.

20 Mob

Subscr

2

Elisa. Real mobile subscription + phone bundle as basis. Reverse-engineered from company web site + added needs analysis

questions to identify suitable product options with soft constraints

 HUT internal validation against offering., presentation in an open seminar for the Finnish industry.

21 Mob

Subscr

3

Telia-Sonera. Demonstration on selecting mobile subscription and some value-added services based on usage characteristics.

Implemented with hard and soft constraints. Based on public information from company website.

 No validation. Behaves as intended by the modeler.

22

Broadb

and

Telia-Sonera. Real broadband subscription product line. 4 worlds model demonstration. Re-engineered from company website,

added customer and needs analysis questions, and aspects of delivery process that are configured based on selected options. Soft

constraints warn when selections do not correspond to needs.

 Complete model with extras. Demonstration to the company.

23

Linux

Debian Linux Familiar distribution configuration model over 6 points of time and several software versions. Information gathered

from Debian Linux version compatibility lists, configuration model generated via script by mapping package descriptions into

PCML [Kojo, et al. 2003]. A newer version than that in Kojo et al. was characterized.

 No validation, "seems and behaves right", although with slow performance.

24 Iced None. Demonstration: minimal fictive car model for ICED conference article describing WeCoTin configurator.

 No validation. Behaves as intended by the modeler.

25Weco

tin car

BMW. Demonstration model based on a subset of a real car, identified configuration rules from company website

 No validation. Behaves as intended by the modeler.

26

CarDiss

BMW. Demonstration model based on 25 WeCoTin Car, with some extra fictive features to demonstrate higher cardinality.

 No validation. Behaves as intended by the modeler.

Table 1. Identification, description, status and validation of the configuration models.

properties of their individuals that can appear in a
configuration. A component type defines its compositional
structure through a set of part definitions. A part definition
specifies a part name, a non-empty set of possible part types
(allowed types for brevity) and a cardinality indicating the
possible number of parts. A component type may define
properties that parametrize or otherwise characterize the
type. A property definition consists of a property name, a
property value type and a necessity definition indicating if
the property must be given a value in a complete
configuration. Component types are organized in a class
hierarchy where a subtype inherits the property and part
definitions of its supertypes in the usual manner. When a
type inherits data from a supertype, the type can use the
inherited data “as such” or it can modify the inherited data
by means of refinement. Refinement is semantically based
on the notion that the set of potential valid individuals
directly of the subtype is smaller than the set of valid
individuals directly of the supertype. A component type is
either abstract or concrete. Only an individual directly of a
concrete type can be used in a configuration. Constraints
associated with component types define conditions that a
correct configuration must satisfy. A constraint expression
is constructed from references to parts and properties of
components and constants such as integers. These can be
combined into complex expressions using relational
operators and Boolean connectives.

3 Model background, identification,

characterization, status and validation

PCML and WeCoTin have been used to model and
configure the complete sales view of 14 real products or
services, and partial sales view of 8 products or services. In
the complete sales views all known configurable options of

the products or services have been modeled. Configuration
models of some products or services contained extra
features that are not normally taken into account during
sales configuration. Three additional demonstration models
are included in the characterizations. Some configuration
models were created in early phases of WeCoTin
construction, some after completion of the development
project.

In most cases, order forms, brochures, and other
documentation were used as a basis for modeling, and
company representatives were contacted for additional
information before showing the results as demonstrations. In
some cases it was possible to re-engineer configuration
model information from company websites.

 The WeCoTin modeling tool was instrumented to
provide the characterizing metrics based on static
configuration model analysis presented in Tables 2-5. The
configuration models come from the following domains:

 Eight models are from machine industry and come

from three companies (5 compressors (1 twice), an

undisclosed vehicle, and one military vehicle).

 Three models from two companies are from healthcare

domain (2 dentist equipment product families, a

hospital bed family.)

 Four models from two companies are from

telecommunications domain (3 mobile and 1

broadband subscriptions).

 Three models from one company are from insurance

domain.

 Two models from one company represent two

generations of maintenance contracts of elevators.

15

 One model is software configuration (Debian Linux

Familiar with package versions).

 One model demonstrates configuration of a modular

fireplace.

 Three models are pure demonstration models – two are

based on a subset of a real car, and one is fictional.

Table 1 identifies the models and briefly characterizes the
domain of each configuration model. Each configuration
model is identified with a unique numeric identifier that
remains the same in each table. Model names have been
abbreviated in later tables due to space constraints.

Table 2 details the degree of configuration model
completeness and model validation status. Five models from
three companies have been test-used by company
representatives. In addition, configuration demonstrations
and immediately following focus groups have been used for
validation of additional seven configuration models.

4 Taxonomy, model size, and pricing

Table 2 provides characterization of component type
hierarchy used in the models, overview of model size, and
.information on price modeling.

One model (23, Linux) was significantly larger than
others and semi-automatically generated. Discussions on
model characterizations exclude this model, but averages
and totals are calculated with and without it.

Numbers of abstract, concrete, and total component types
contribute to the size of a configuration model, and are
shown in corresponding columns of Table 2. The total
number of component types varied from one 1 to 626, the
median was 9 and average was 18 (42 with Linux). The
number of direct subtypes of abstract types (other than root
of component type hierarchy Component) (“Subtypes”)
characterizes the number of component types organized in a
type hierarchy. Interpreted as a percentage “% as subtypes”,
the figure varied from 0% to 100%, with average without
Linux being 59% and median 46%.

Each selectable attribute or part of a component
individual being configured generates a question during a
configuration process. The number of questions in a
configuration model (“Questions”) roughly characterizes the
size of each configuration model and the related
configuration task. In a typical configuration model without
redundant concrete component types, each question might
have to be answered while configuring a product. All
possible questions may not be asked in a configuration
session, because an individual of a specific type is not
necessarily selected into a configuration, or if some
attributes or parts are defined to be invisible to the user or to
have a fixed value. On the other hand, if several individuals
of a component type are in a configuration, the number of
questions may be multiplied. The average was 61 questions
per configuration model, and roughly 5.4 questions per
concrete type (excluding Linux).

Model T
o

tal ty
p
es

A
b

stract ty
p

es

C
o

n
crete ty

p
es

S
u

b
ty

p
es

%
 as su

b
ty

p
es

Q
u

estio
n
s

%
 q

u
estio

n
s in

ro

o
t

C
o

n
strain

ts

P
rice

1 C FM 9 2 7 4 44 31 58 17 adv

2 CFm sc 9 2 7 4 44 31 58 17 adv

3 C FS 3 0 3 0 0 24 88 14 adv

4 C FX 1 0 1 0 0 20 100 23 adv

5 C FL 9 2 7 4 44 28 64 13 no

6 C M 3 0 3 0 0 23 91 14 no

7 KO old 5 0 5 0 0 28 79 13 no

8 Ko new 15 3 12 7 47 77 4 1 no

9 Bed 31 8 23 27 87 34 76 10 basic

10 Firepl 7 1 6 4 57 4 75 0 no

11 Pasi 5 1 4 2 40 79 95 13 no

12 Dental 64 11 53 43 67 109 3 36 no

13 X-ray 11 2 9 4 36 37 41 3 no

14 Vehicl 28 4 24 9 32 24 75 7 basic

15 Ins 1 8 2 6 5 63 30 20 4 no

16 Ins 2 62 13 49 56 90 49 20 0 no

17 Ins 3 11 3 8 5 45 41 29 14 no

18 Ins 4 37 11 26 34 92 242 5 84 no

19 Mob 1 4 0 4 0 0 18 56 6 basic

20 Mob 2 39 9 30 38 97 65 25 28 basic

21 Mob 3 5 1 4 3 60 21 38 6 no

22 Broad 66 15 51 64 97 485 1 43 no

23 Linux 626 1 625 624 100 4369 14 2380 no

24 Iced 8 2 6 5 63 4 75 3 basic

25 Wcar 6 1 5 2 33 10 60 3 basic

26CarDis 10 2 8 5 50 12 58 3 basic

Total 1082 96 986 949 5985 2755

Total no
Linux

456 95 361 325 1526 375

Average 42 4 38 37 48 227 50 106

Avg no
Linux

18 4 14 13 59 61 52 15

Median 9 2 7 5 46 31 58 13

Min 1 0 1 0 0 4 1 0

Max 626 15 625 624 100 4369 100 2380

Table 2. Use of pricing mechanisms, company look, and

component type hierarchy in the configuration models.

Especially simpler models were often centered on the
configuration type that is the root of the compositional
hierarchy. The degree of such concentration is characterized
by the proportion of questions defined in the configuration
type. Column “% questions in root” specifies this
proportion. On the average about half (50%), and median
58% of questions were in the root component type, with a
large scale of variation.

The total number of constraints (“Constraints”) specified
in the component types of each configuration model varied

16

largely, but usually remained in a few dozen at maximum.
More details will be given in Section 2.5.

Column “Price” indicates which of two price calculation
mechanisms, if any, was used. The “basic” mechanism
considers additive prices: each component individual can
have a base price determined by its type, and each attribute
value can specify additional price. The sum of component
individual and their attribute value prices is the price of the
configuration. Four real products and three demonstration
models applied this pricing mechanism.

A more advanced calculation mechanism (“adv”)
[Nurmilaakso. 2004] performs definable calculations as
function of the current configuration, configuration model,
and external data. Values are provided to calculations when
condition expressions examining a configuration evaluate to
true. Three products were priced with this mechanism.

Prices were often omitted either due to indicated
sensitivity or to constrain resource usage. The simple
mechanism would have been sufficient for other products
except compressors and insurance products.

5 Compositional structure

Table 3 exhibits details of applying compositional structure
in the modeled cases. An indication on the number of parts
in a configuration model is given by the number effective
parts in concrete types of the model. The number of
effective parts (“Effective parts”) is the sum of inherited and
locally defined parts in concrete types. The average number
of effective parts per concrete component type (“Eff. parts /
concrete”) characterizes the breath of the configuration tree
and average application of the compositional structure as a
modeling mechanism. On the average, 10 parts were defined
in each configuration model. Median was 4. The average of
0.6 effective parts in each concrete type indicates moderate
usage of the compositional structure.

Inheritance in the compositional structure was used on the
average less frequently than direct part definitions in
concrete types: Eight models applied inheritance of parts
whereas parts were introduced in 25 models. On the
average, seven part definitions were defined in concrete
types (“Part def in concrete”), and one part per
configuration model was defined in abstract types (“Part def
in abstract”). Four of the effective 10 part definitions were
inherited. Three inherited part definitions were applied as
such (“Non-refined inherited”), and one was refined, e.g. to
restrict the set of allowed types (“Refined inherited”). Some
models applied part inheritance significantly more. For
example, in model 12 Dental, 26 (79%) of 33 effective part
definitions were inherited (“% inherited parts”). Out of these
6 were refined. The eight models applying part inheritance
had 31% (80) of their 257 effective part definitions
inherited.

Many configuration models concentrated part definitions
on the configuration type. An average configuration type
contained 4 part definitions (“Part def in conftype”). In 12
models all parts were defined in the configuration type. The
average percentage of part definitions in the configuration
type was 70% (“% part def in conf type”).

The cardinality of a part definition defines how many
component individuals must realize the part in a consistent
and complete configuration. On the average, 6 part
definitions were optional, that is, with cardinality with 0 to 1
(“0 to 1 cardinality”), and 2 part definitions were obligatory
with cardinality 1 to 1 (“1 to 1 cardinality”). Only one
demonstration model contained one part definition with a
larger maximum cardinality than one (“max cardinality
2+”).
Model E

ffectiv
e p

arts

E
ff. p

arts / co
n
crete

 P
art d

ef in
 co

n
crete

t P
art d

ef in
 ab

stract
t P

art d
ef in

 co
n

f ty
p

e

%
 p

art d
ef in

 co
n

fty
p

e

N
o

n
-refin

ed
 in

h
erited

t

R
efin

ed
 in

h
erited

%
 in

h
erited

 p
arts

 0
 to

 1
 card

in
ality

1
 to

 1
 card

in
ality

'

m
ax

 card
in

ality
 2

+

E
n

u
m

erated
 allo

w
ed

t E

ffectiv
e allo

w
ed

t %

 allo
w

ed
 sav

ed

M
ax

 allo
w

ed

1 C FM 4 0.6 2 1 2 50 1 1 50 0 3 0 6 6 0 2

2 C Fm sc 4 0.6 2 1 2 50 1 1 50 0 3 0 6 6 0 2

3 Com FS 1 0.3 1 0 1 100 0 0 0 0 1 0 2 2 0 2

4 com FX 0 0.0 0 0 0 - 0 0 - 0 0 0 0 0 - 0

5 com FL 4 0.6 2 1 2 50 1 1 50 0 3 0 6 6 0 2

6 com M 1 0.3 1 0 1 100 0 0 0 0 1 0 2 2 0 2

7 KO old 2 0.4 2 0 2 100 0 0 0 1 1 0 4 4 0 2

8 Ko new 19 1.6 10 3 2 11 5 4 47 11 2 0 14 17 18 3

9 Bed 3 0.1 3 0 3 100 0 0 0 0 3 0 5 32 84 12

10 Firepla 2 0.3 2 0 2 100 0 0 0 1 1 0 2 5 60 4

11 Pasi 2 0.5 2 0 2 100 0 0 0 1 1 0 3 3 0 2

12 Dental 33 0.6 7 13 1 3 20 6 79 18 2 0 33 80 59 8

13 X-ray 5 0.6 3 1 2 40 0 2 40 3 1 0 8 8 0 3

14 Vehicl 16 0.7 16 0 12 75 0 0 0 12 4 0 20 24 17 3

15 Insur 1 10 1.7 10 0 6 60 0 0 0 9 1 0 10 10 0 1

16 Insur 2 30 0.6 22 4 10 33 8 0 27 24 2 0 26 29 10 4

17 Insur 3 12 1.5 12 0 11 92 0 0 0 10 2 0 13 13 0 2

18 Insur 4 53 2.0 30 5 12 23 27 0 51 35 0 0 35 46 24 4

19 Mob 1 3 0.8 3 0 3 100 0 0 0 3 0 0 3 3 0 1

20 Mob 2 13 0.4 13 0 12 92 0 0 0 8 5 0 15 27 44 5

21 Mob 3 1 0.3 1 0 1 100 0 0 0 1 0 0 3 3 0 3

22 Broad 32 0.6 30 1 4 13 2 0 6 10 21 0 32 53 40 15

23 Linux 62
4

1.0 62
4

0 62
4

100 0 0 0 62
4

0 0 62
4

62
4

0 1

24 Iced 2 0.3 2 0 2 100 0 0 0 0 2 0 2 5 60 3

25 Car 2 0.4 2 0 2 100 0 0 0 1 1 0 3 4 25 2

26 CarDis 3 0.4 3 0 3 100 0 0 0 1 1 1 4 7 43 3

Total 88
1

80
5

30 72
4

 65 15 77
3

61 1 88
1

10
19

Total no
Linux

25
7

18
1

30 10
0

 65 15 14
9

61 1 25
7

39
5

Average 34 0.7 31 1 28 72 3 1 16 30 2 0 34 39 19 4

Avg no li 10 0.6 7 1 4 70 3 1 17 6 2 0 10 16 20 4

Median 4 0.6 3 0 2 92 0 0 0 1 1 0 6 7 0 3

Minimum 0 0.0 0 0 0 3 0 0 0 0 0 0 0 0 0 0

Maximu
m

62
4

2.0 62
4

13 62
4

100 27 6 79 62
4

21 1 62
4

62
4

84 15

Table 3. Compositional structure of the configuration models.

17

A part is realized with individuals(s) of allowed types. A
part definition explicitly enumerates the allowed types. The
number of directly enumerated allowed types (“Enumerated
allowed”) is often smaller than the number of effectively
allowed component types (“Effective allowed”), because
specifying a supertype as an allowed type effectively
specifies the concrete subtypes as allowed types. An average
configuration model directly specified 10 and effectively 16
component types in the average 8 part definitions. The
average percentage of “savings” was 20% (“% allowed
saved”). The relatively low number of allowed types is
partially explained by relatively often occurring optional
parts with only one effective allowed type. The maximum
number of effective allowed types in a part definition (“Max
allowed”) was on the average and median 4 types, and
maximally 15.

6 Attributes

Table 4 exhibits details of applying attributes in the modeled
cases. A rough indication on the number of attributes in a
configuration model is given by the number effective
attributes of the configuration model. The number of
effective attributes (“Effective attributes”) is the sum of
inherited and locally defined attributes in concrete types.
Concrete types had a total of 1269 effective attributes.
Average without the Linux model was 51 effective
attributes and the median was 25. The average of average
number of effective attributes per concrete component type
(“Effective / concrete”) was 4.8, and median of averages
was 3.7.

Inheritance of attributes was applied more frequently than
inheritance of parts, but less frequently than direct attribute
definitions in concrete types: 16 models applied inheritance
of attributes whereas all 26 models defined attributes.

On the average a model contained 26 attribute definitions
in concrete types (“Defs in concrete”). The 5 attribute
definitions in abstract types (“Defs in abstract”) expanded to
an average of 25 effective attributes in concrete types. The
average percentage of inherited attributes in concrete types
(“% Inherited”) was 23%. Some models applied attribute
inheritance more significantly, e.g. 44 - 89% of effective
attributes were inherited in some larger models.

Of the 1269 effective attributes, 51% (642) were defined
locally (“Defs in Concrete”), and the remaining 49% (627)
were inherited. 122 attribute definitions in abstract types
(“Defs in abstract”) were inherited as such into 537
attributes in subtypes (“Non-refined inherited”), and into
168 attributes in refined form (“Refined inherited”), a total
of 705 inherited attributes.1 Often attribute definitions were
concentrated on the configuration type, 54% (14) of the 26
models specified at least 50% of effective attribute
definitions there. An average configuration type defined 11
attributes (“Def in config type”). The average percentage of
attribute definitions in the configuration type was 46%. (“%
part def in conf type”).

1 The 705 inherited attributes includes 78 (705-627)
attributes inherited to abstract types.

Model

 E
ffectiv

e attrib
u
tes

E
ffectiv

e / co
n
crete

%
 In

h
erited

A
ttr. d

efin
itio

n
s

D
efs in

 co
n
crete

 D
efs in

 ab
stract

D
ef in

 co
n

fig
 ty

p
e

B
o

o
lean

E
n

u
m

erated
 strin

g

In
teg

er

R
efin

ed
 in

h
erited

N
o

n
-refin

ed
 in

h
erited

O
p

tio
n

al attr. d
efs

M
ax

im
u

m
 d

o
m

ain

D
o

m
ain

 1

D
o

m
ain

 2
 to

 3

D
o

m
ain

4
 to

 1
0

D
o

m
ain

 1
1

+

1 FM 27 3.9 22 24 21 3 16 7 13 4 2 4 0 61 0 17 6 1

2 Fm sc 27 3.9 22 24 21 3 16 7 13 4 2 4 0 61 0 17 6 1

3 FS 23 7.7 0 23 23 0 20 5 13 5 0 0 0 51 0 16 6 1

4 FX 20 20.0 0 20 20 0 20 5 10 5 0 0 0 44 0 12 7 1

5 FL 24 3.4 17 22 20 2 16 7 12 3 2 2 0 20 0 13 7 1

6 M 22 7.3 0 22 22 0 20 5 14 3 0 0 0 15 0 11 8 1

7 K old 26 5.2 0 26 26 0 20 8 9 4 0 0 0 10 0 14 7 0

8 k new 58 4.8 81 29 11 18 1 12 7 2 23 24 0 4 0 18 3 0

9 Bed 31 1.3 0 31 31 0 23 17 13 1 0 0 2 7 0 26 5 0

10 Fire 2 0.3 0 2 2 0 1 0 2 0 0 0 0 2 0 2 0 0

11 Pasi 77 19.3 3 76 75 1 73 39 37 0 0 2 0 5 0 67 9 0

12 dent 76 1.4 70 48 23 25 2 28 19 1 3 50 8 10 0 41 7 0

13 xray 32 3.6 44 25 18 7 13 10 7 8 2 12 2 11 0 16 1 8

14Vehi 8 0.3 0 8 8 0 6 3 4 1 0 0 0 22 0 5 2 1

15 Ins1 20 3.3 10 19 18 1 0 4 6 9 0 2 0 11 1 9 8 1

16 Ins2 19 0.4 58 12 8 4 0 4 2 5 0 11 0 11 0 7 3 1

17 Ins3 29 3.6 0 29 29 0 1 17 6 4 0 0 3 12

2

0 21 4

2

18 Ins4 18
9

7.3 26 15
9

14
0

19 0 14
4

3 2 0 49 1 10

1

0 14

6

1

2

19 Mo1 15 3.8 0 15 15 0 7 10 2 3 0 0 2 13 0 10 2 3

20 Mo2 52 1.7 29 40 37 3 4 25 10 2 15 0 1 5 0 35 2 0

21 Mo3 20 5.0 60 12 8 4 7 12 0 0 0 12 0 2 0 12 0 0

22
Broa

45
3

8.9 89 81 51 30 0 51 12 3 11
9

36
1

1 43

6

4 58 1

3

23 Linu 37
45

6.0 67 12
53

12
49

4 1 0 12
48

3 12
48

12
48

0 6 55

1

69

1

9

0

24 Iced 2 0.3 0 2 2 0 1 0 1 1 0 0 0 2 0 2 0 0

25Wcar 8 1.6 25 7 6 1 4 4 3 0 0 2 0 5 0 6 2 0

26 Diss 9 1.1 22 8 7 1 4 5 3 0 2 2 0 5 0 6 2 0

Total 50
14

20
17

18
91

12
6

27
6

42
9

14
69

73 14
16

17
85

20 55

6

12

78

10

8 27

Tot. no
Linux

12
69

76
4

64
2

12
2

27
5

42
9

22
1

70 16
8

53
7

20 5 58

7

99

27

Averag
e

19
3

4.8 25 78 73 5 11 17 57 3 54 69 1 40 21 49 4

1

Avg no
Linux

51 4.8 23 31 26 5 11 17 9 3 7 21 1 41 0 23 4

1

Median 25 3.7 19 24 21 1 5 7 8 3 0 2 0 11 0 15 4 1

Minim
um

2 0.3 0 2 2 0 0 0 0 0 0 0 0 2 0 2 0

0

Maxim
um

37
45

20.0 89 12
53

12
49

30 73 14
4

12
48

9 12
48

12
48

8 43

6

55

1

69

1

9

8

Table 4. Attributes in the configuration models.

Attribute value types were distributed as follows: of
average 31 attribute definitions per configuration model, 17
were Boolean (“Boolean”), 9 were enumerated strings
(“”Enumerated string”), 3 integers (“Integer”), and 2
unconstrained strings. In total there were 56% (429)

18

Boolean, 29% (221) enumerated string, 9% (70) integer, and
6% (44) unconstrained string attribute definitions.
Unconstrained strings specified additional details such as
customer names, addresses, etc. aspects that do not require
inference.

Attribute domain sizes remained quite small. A domain of
at least 11 possible values (“Domain 11+”) was present in
about 4% (27) of 717 attribute definitions with a fixed
domain. The maximum domain size (“Maximum domain”)
varied significantly – the largest domain was 436 possible
values, in this case enumerated string values. The most
common domain size was 2 to 3 possible values (“Domain 2
to 3”) in 82% (587) of attribute definitions. 14% (108) of
attribute domains were of size 4-10 (“Domain 4 to 10”).
Domain of size 1 (“Domain 1”) was encountered in 1% (5)
cases.

20 attributes were defined as optional, (“Optional attr.
defs”) meaning that it is possible to specify in a complete
configuration that no value will be assigned to the attribute.

7 Constraints

The number of constraints varied significantly from 0 to 84
(2380 with Linux), an average of 15 per model. The median
was 13. On the average, two of the constraints were soft,
and the rest were hard. Totally 44 constraints were defined
in abstract component types, of these 40 were hard and 4
soft. As with other modeling constructs, definition of a
constraint in a supertype causes inheritance to subtypes.

It is not trivial to characterize complexity of constraints.
A simple syntactic metric based on parse tree complexity of
the resulting constraint expression was calculated. For
example, consider the following a constraint:
Active_Cruise_Control_Requires_BiXenon
(Cruise_control = true) implies
($config.Headlights individual of BiXenon)

The “complexity” of the example constraint is seven (7).
Complexity of a literal, a constant, a variable, a component
type reference, element access, an ID-expression, or an
element reference in the expression is one. Each operator
application counts one plus complexity of each argument.

Typical constraints were small, almost half (45%) of the
constraints were of roughly the same complexity as the
example constraint above, and 36% a bit more complex.

 12% (45) of constraints had complexity 0-5

 45% (170) of constraints had complexity 6-10

 36% (135) of constraints had complexity 11-20

 4% (14) of constraints had complexity 21-50

 1% (4) of constraints had complexity 51-100

 1% (4) of constraints had complexity 101-1000

 1% (3) of constraints had complexity over 1000

Maximum constraint complexity varied significantly. The
median was as low as 13, and average without Linux was
235. The maximum complexity was 1319. All the
compressor models had a large table constraint specifying
feasible combinations of values of 5 attributes, each with a

relatively large number of rows, which explains the high
average.

8 Discussion, future work, and conclusions

8.1 Limitations

Modeling and evaluation of modeling mechanisms contains
author bias. All modeling was performed by researchers
who were involved in development of the system.

The companies whose products were modelled were
either existing or potential research partners. In other words,
the sample of companies was not selected e.g. to cover most
challenging cases such as telecommunications networks.

8.2 Modeling mechanisms

Some partial models were created due to resource
constraints, or when the purpose of modeling was attainable
with partial modeling. In other words, capabilities of PCML
or WeCoTin did not limit the scope of modeling. However,
Floats, fixed point numbers or integers with very large
domain would have been useful in the insurance and
compressor domains. In the insurance case some
specification variables such as a desired amount of
monetary coverage were specifiable with arbitrary monetary
amounts, which can lead to very large domains. Apartment
size and desired coverage were discretized in model “16
Insur 1”. In compressor models, the company had calculated
and validated combinations of specification variable values
that produce a specific nominal capacity, represented in a
table constraint. Further, a specific percentage of capacity
loss is encountered in high altitude use environments.
Calculating this would have been more convenient with
floating or fixed point arithmetic.

Application of the compositional structure was important
but less frequent than anticipated. A partial explanation is
that it was often considered more practical to model
alternative or optional components as enumeration or
Boolean attributes rather than as a part, if there was no need
to configure details of the selected component individuals.

Part definitions with cardinality were useful: the
mechanism provides a convenient way to model selecting at
most one or exactly one component individual to a role in
product structure out of several alternatives. This capability
prevents the need for a number of extra constraints. For
example, some commercial systems require that each
alternative is specified as optional, and a mutual exclusivity
constraint is required [Damiani, et al. 2001]. However,
sometimes the mechanism was a bit clumsy: in case of an
optional part (cardinality 0 to 1), and exactly one allowed
type, it was difficult to invent a name for the component
type and for the part. A bit surprisingly, large cardinalities
were not needed in these configuration models.

Applying inheritance saved modeling effort in larger
models significantly. Almost half (49%) of effective
attributes were inherited, and one definition in a supertype
created in average 4.4 effective attributes. Refinement of
inherited attributes and parts was a useful mechanism for

19

limiting the domain of allowed values or allowed types.
created through statistics. Refinement facilitated the
application of inheritance also in cases where some subtypes
have a narrower range of allowed values or types.
Inheritance related to compositional structure was also
useful, but was applied only in about 31% of the models.
This mechanism was generally used in larger models, where
almost a third of part definitions were inherited.

There was no need for explicit resource balancing or
satisfaction in the modeled cases. There was no need for
topological modeling, e.g. ports in our modeled cases.
However, when modeling services and their delivery
processes [Tiihonen, et al. 2007], there was a need to assign
different stakeholders as resources that participate in
different service activities. This assignment can be
somewhat clumsily modeled with attributes. However,
allocation of responsibilities to different, dynamically
defined stakeholders could be more naturally modeled as
connections between the activities and stakeholders.

8.3 Future work

The amount of work required to create a configuration
model depended to a large extent on the knowledge
acquisition and validation work. Collecting reliable statistics
on total effort of creating and maintaining configuration
models remains future work.

Performance evaluations are important characterization of
configuration models. In previous work, performance of
some of the models has been evaluated, and was found
satisfactory[Tiihonen, et al. 2002]. However, performance
should be tested with a larger and more representative set of
configuration models.

8.4 Conclusions

The main contribution of this paper is providing, to our
knowledge, the first multi-case in-depth characterization of
configuration models and analysis of utility of modeling
mechanisms. A combination of taxonomic hierarchy with
inheritance and strict refinement, compositional structure
with the concept of part definitions, attributes, and
constraints for expressing consistency requirements of a
configuration seem to be able to effortlessly capture a
significant subset of sales configuration problems. The
utility of inheritance in configuration was shown through
significant application of the mechanism, especially when
related to attributes, and to a lesser but still significant
extent to parts.

In addition, this work provides an initial proposal for a
framework for characterizing configuration models.

Acknowledgements

We thank A. Anderson, A. Martio, J. Elfström, K. Sartinko,
M. Heiskala, M. Pasanen, and T. Kojo for modeling and
knowledge acquisition; A. Martio and R. Sulonen for
acquisition of the cases; Gardner Denver Finland, KONE,
Patria,Tapiola Group for sharing product information; and
TEKES for funding WeCoTin, ConSerWe, and Cosmos

References

Barker, V. E., O'Connor, D. E., Bachant, J., & Soloway, E.
(1989). Expert systems for configuration at digital:
XCON and beyond. Communications of the ACM,
32(3), 298-318.

Damiani, S. R., Brand, T., Sawtelle, M., & Shanzer, H.
(2001). Oracle configurator developer User’s guide,
release 11i Oracle Corporation.

Fleischanderl, G., Friedrich, G., Haselbock, A., Schreiner,
H., & Stumptner, M. (1998). Configuring large systems
using generative constraint satisfaction. Intelligent
Systems and their Applications, IEEE [See also IEEE
Intelligent Systems], 13(4), 59-68.

Haag, A. (2008). What makes product configuration viable
in a business? Proceedings of ECAI 2008 Workshop on
Configuration Systems, Patras, Greece. 53-54.

Kojo, T., Männisto, T. And Soininen, T. (2003). Towards

Intelligent Support for Managing Evolution of

Configurable Software Product Families. In Software

Configuration Management (ICSE Workshops SCM

2001 and SCM 2003 Selected Papers), 86-101.
Nurmilaakso, J. (2004). WeCotin.calc documentation.

Unpublished manuscript.
Peltonen, H., Tiihonen, J., & Anderson, A. (2001).

Configurator tool concepts and model definition
language. Unpublished manuscript.

Schreiber, A. T., & Birmingham, W. P. (1996). Editorial:
The Sisyphus-VT initiative. International Journal of
Human-Computer Studies, 44(3-4), 275-280.

Soininen, T., Niemelä, I., Tiihonen, J., & Sulonen, R.
(2001). Representing configuration knowledge with
weight constraint rules. Proceedings of the AAAI Spring
Symp.on Answer Set Programming: Towards Efficient
and Scalable Knowledge, , 195–201.

Soininen, T., Tiihonen, J., Mannisto, T., & Sulonen, R.
(1998). Towards a general ontology of configuration. AI
EDAM, 12(04), 357-372.

Tiihonen, J., Heiskala, M., Paloheimo, K., & Anderson, A.
(2007). Applying the configuration paradigm to mass-
customize contract based services. Paper presented at the
Extreme Customization: Proceedings of the MCPC 2007
World Conference on Mass Customization &
Personalization, Massachusetts Institute of Technology,
MA, USA. paper ID MCPC-134-2007, section 7.5.3.

Tiihonen, J., Soininen, T., Niemelä, I., & Sulonen, R.
(2003). A practical tool for mass-customising
configurable products. Paper presented at the
Proceedings of the 14th International Conference on
Engineering Design, Stockholm, Sweden. Paper 1290.

Tiihonen, J., Soininen, T., Niemelä, I., & Sulonen, R.
(2002). Empirical testing of a weight constraint rule
based configurator. Proceedings of the Configuration
Workshop, 15th European Conference on Artificial
Intelligence, Lyon, France, 2002. 17–22-17-22.

Wielinga, B., & Schreiber, G. (1997). Configuration-design
problem solving. Expert, IEEE [See also IEEE
Intelligent Systems and their Applications], 12(2), 49-56.

20

Efficient Explanations for Inconsistent Constraint Sets

Alexander Felfernig1 and Monika Schubert1 and

Monika Mandl1 and Gerhard Friedrich2 and Erich Teppan2

Abstract. Constraint sets can become inconsistent in different con-

texts. For example, during a configuration session the set of customer

requirements can become inconsistent with the configuration knowl-

edge base. Another example is the engineering phase of a configu-

ration knowledge base where the underlying constraints can become

inconsistent with a set of test cases. In such situations we are in the

need of techniques that support the identification of minimal sets of

constraints that have to be adapted or deleted in order to restore con-

sistency. In this paper we introduce a divide-and-conquer based diag-

nosis algorithm (FASTDIAG) which identifies minimal sets of faulty

constraints in an over-constrained problem. This algorithm is specifi-

cally applicable in scenarios where the efficient identification of lead-

ing (preferred) diagnoses is crucial. We compare the performance of

FASTDIAG with the conflict-directed calculation of hitting sets and

present an in-depth performance analysis that shows the advantages

of our approach.

1 Introduction

Constraint technologies [19] are applied in different areas such as

configuration [11, 15, 18], recommendation [9], and scheduling [3].

There are many scenarios where the underlying constraint sets can

become over-constrained. For example, when implementing a con-

figuration knowledge base, constraints can become inconsistent with

a set of test cases [8]. Alternatively, when interacting with a con-

figurator application [9, 16], the given set of customer requirements

(represented as constraints) can become inconsistent with the config-

uration knowledge base. In both situations there is a need of an in-

telligent assistance that actively supports users of a constraint-based

application (end users or knowledge engineers). A wide-spread ap-

proach to support users in the identification of minimal sets of faulty

constraints is to combine conflict detection (see, e.g., [13]) with a

corresponding hitting set algorithm [6, 17]. In their original form

these algorithms are applied for the calculation of minimal diag-

noses which are typically determined with breadth-first search. Fur-

ther diagnosis algorithms have been developed that follow a best-first

search regime where the expansion of the hitting set search tree is

guided by failure probabilities of components [5]. Another example

for such an approach is presented in [9] where similarity metrics are

used to guide the (best-first) search for a preferred (plausible) mini-

mal diagnosis (including repairs).

Both, simple breadth-first search and best-first search diagnosis

approaches are predominantly relying on the calculation of conflict

sets [13]. In this context, the determination of a minimal diagnosis of

cardinality n requires the identification of at least n minimal conflict

sets. In this paper we introduce a diagnosis algorithm (FASTDIAG)

1 TU Graz, Austria, email: {felfernig, schubert, mandl}@ist.tugraz.at
2 University of Klagenfurt, Austria, email: {friedrich, teppan}@uni-klu.ac.at

that allows to determine one minimal diagnosis at a time with the

same computational effort related to the calculation of one conflict set

at a time. The algorithm supports the identification of preferred diag-

noses given predefined preferences regarding a set of decision alter-

natives. FASTDIAG is boosting the applicability of diagnosis meth-

ods in scenarios such as online configuration & reconfiguration [8],

recommendation of products & services [9], and (more generally) in

scenarios where the efficient calculation of preferred (leading) diag-

noses is crucial [5]. FASTDIAG is not restricted to constraint-based

systems but it is also applicable, for example, in the context of SAT

solving [14] and description logics reasoning [12].

The remainder of this paper is organized as follows. In Section

2 we introduce a simple example configuration task from the auto-

motive domain. In Section 3 we discuss the basic hitting set based

approach to the calculation of diagnoses. In Section 4 we introduce

an algorithm (FASTDIAG) for calculating preferred diagnoses for a

given over-constrained problem. In Section 5 we present a detailed

evaluation of FASTDIAG which clearly outperforms standard hitting

set based algorithms in the calculation of the topmost-n preferred di-

agnoses. With Section 6 we provide an overview of related work in

the field. The paper is concluded with Section 7.

2 Example Domain: Car Configuration

Car configuration will serve as a working example throughout this

paper. Since we exploit configuration problems for the discussion of

our diagnosis algorithm, we first introduce a formal definition of a

configuration task. This definition is based on [8] but is given in the

context of a constraint satisfaction problem (CSP) [19].

Definition 1 (Configuration Task). A configuration task can be

defined as a CSP (V, D, C). V = {v1, v2, . . . , vn} represents a set of

finite domain variables. D = {dom(v1), dom(v2), . . . , dom(vn)} rep-

resents a set of variable domains dom(vk) where dom(vk) represents

the domain of variable vk. C = CKB ∪ CR where CKB = {c1, c2, . . . ,

cq} is a set of domain specific constraints (the configuration knowl-

edge base) that restrict the possible combinations of values assigned

to the variables in V. CR = {cq+1, cq+2, . . . , ct} is a set of customer

requirements also represented as constraints.

A simplified example of a configuration task in the automotive do-

main is the following. In this example, type represents the car type,

pdc is the parc distance control functionality, fuel represents the fuel

consumption per 100 kilometers, a skibag allows the ski stowage in-

side the car, and 4-wheel represents the corresponding actuation type.

These variables describe the potential set of requirements that can be

specified by the user (customer). The possible combinations of these

requirements are defined by a set of constraints which are denoted as

configuration knowledge base, CKB = {c1, c2, c3, c4}. Furthermore,

we assume the set of customer requirements CR = {c5, c6, c7}.

21

• V = {type, pdc, fuel, skibag, 4-wheel}

• D = {dom(type)={city, limo, combi, xdrive}, dom(pdc)= {yes,

no}, dom(fuel) = {4l, 6l, 10l}, dom(skibag)={yes, no}, dom(4-

wheel)={yes, no}

• CKB = {c1: 4-wheel = yes ⇒ type = xdrive, c2: skibag = yes ⇒
type 6= city, c3: fuel = 4l ⇒ type = city, c4: fuel = 6l ⇒ type 6=
xdrive}

• CR = {c5: type = combi, c6: fuel = 4l, c7: 4-wheel = yes}

On the basis of this configuration task definition, we can now intro-

duce the definition of a concrete configuration (solution for a config-

uration task).

Definition 2 (Configuration). A configuration for a given config-

uration task (V, D, C) is an instantiation I = {v1=ins1, v2=ins2, . . . ,

vn=insn} where insk ∈ dom(vk).

A configuration is consistent if the assignments in I are consistent

with the ci ∈ C. Furthermore, a configuration is complete if all vari-

ables in V are instantiated. Finally, a configuration is valid if it is

consistent and complete.

3 Diagnosing Over-Constrained Problems

For the configuration task introduced in Section 2 we are not able

to find a solution, for example, a combi-type car does not support a

fuel consumption of 4l per 100 kilometers. Consequently, we want

to identify minimal sets of constraints (ci ∈ CR) which have to be

deleted (or adapted) in order to be able to identify a solution (re-

store the consistency). In the example of Section 2 the set of con-

straints CR={c5, c6, c7} is inconsistent with the constraints CKB=

{c1, c2, c3, c4}, i.e., no solution can be found for the underlying con-

figuration task. A standard approach to determine a minimal set of

constraints that have to be deleted from an over-constrained prob-

lem is to resolve all minimal conflicts contained in the constraint set.

The determination of such constraints is based on a conflict detection

algorithm (see, e.g., [13]), the derivation of the corresponding diag-

noses is based on the calculation of hitting sets [17]. Since both, the

notion of a (minimal) conflict and the notion of a (minimal) diagnosis

will be used in the following sections, we provide the corresponding

definitions here.

Definition 3 (Conflict Set). A conflict set is a set CS ⊆ CR s.t.

CKB ∪ CS is inconsistent. A conflict set CS is a minimal if there

does not exist a conflict set CS’ with CS’ ⊂ CS.

In our working example we can identify three minimal conflict

sets which are CS1={c5,c6}, CS2={c5,c7}, and CS3={c6,c7}.

CS1, CS2, CS3 are conflict sets since CS1 ∪ CKB ∨ CS2 ∪ CKB

∨ CS3 ∪ CKB is inconsistent. The minimality property is fulfilled

since there does not exist a conflict set CS4 with CS4 ⊂ CS1 or CS4

⊂ CS2 or CS4 ⊂ CS3. The standard approach to resolve the given

conflicts is the construction of a corresponding hitting set directed

acyclic graph (HSDAG) [17] where the resolution of all minimal con-

flict sets automatically corresponds to the identification of a minimal

diagnosis. A minimal diagnosis in our application context is a mini-

mal set of customer requirements contained in the set of car features

(CR) that has to be deleted from CR (or adapted) in order to make

the remaining constraints consistent with CKB . Since we are dealing

with the diagnosis of customer requirements, we introduce the defi-

nition of a customer requirements diagnosis problem (Definition 4).

This definition is based on the definition given in [8].

Definition 4 (CR Diagnosis Problem). A customer requirements

diagnosis (CR diagnosis) problem is defined as a tuple (CKB , CR)

where CR is the set of given customer requirements and CKB repre-

sents the constraints part of the configuration knowledge base.

The definition of a CR diagnosis that corresponds to a given CR

Diagnosis Problem is the following (see Definition 5).

Definition 5 (CR Diagnosis). A CR diagnosis for a CR diagnosis

problem (CKB , CR) is a set ∆ ⊆ CR, s.t., CKB ∪ (CR - ∆) is con-

sistent. ∆ is minimal if there does not exist a diagnosis ∆’ ⊂ ∆ s.t.

CKB ∪ (CR - ∆’) is consistent.

The HSDAG algorithm for determining minimal diagnoses is dis-

cussed in detail in [17]. The concept of this algorithm will be ex-

plained on the basis of our working example. It relies on a conflict

detection algorithm that is responsible for detecting minimal con-

flicts in a given set of constraints (in our case in the given customer

requirements). One conflict detection algorithm is QUICKXPLAIN

[13] which is based on an efficient divide-and-conquer search strat-

egy. For the purposes of our working example let us assume that the

first minimal conflict set determined by QUICKXPLAIN is the set

CS1= {c5, c6}. Due to the minimality property, we are able to re-

solve each conflict by simply deleting one element from the set, for

example, in the case of CS1 we have to either delete c5 or c6. Each

variant to resolve a conflict set is represented by a specific path in

the corresponding HSDAG – the HSDAG for our working example

is depicted in Figure 1. The deletion of c5 from CS1 triggers the

calculation of another conflict set CS3 = {c6, c7} since CR - {c5} ∪
CKB is inconsistent. If we decide to delete c6 from CS1, CR - {c6} ∪
CKB remains inconsistent which means that QUICKXPLAIN returns

another minimal conflict set which is CS2 = {c5, c7}.

The original HSDAG algorithm [17] follows a strict breadth-first

search regime. Following this strategy, the next node to be expanded

in our working example is the minimal conflict set CS3 which has

been returned by QUICKXPLAIN for CR - {c5} ∪ CKB . In this con-

text, the first option to resolve CS3 is to delete c6. This option is a

valid one and ∆1= {c5, c6} is the resulting minimal diagnosis. The

second option for resolving CS3 is to delete the constraint c7. In this

case, we have identified the next minimal diagnosis ∆2 = {c5, c7}

since CR - {c5, c7} ∪ CKB is consistent. This way we are able to

identify all minimal sets of constraints ∆i that – if deleted from CR

– help to restore the consistency with CKB . If we want to calculate

the complete set of diagnoses for our working example, we still have

to resolve the conflict set CS2. The first option to resolve CS2 is to

delete c5 – since {c5, c6} has already been identified as a minimal

diagnosis, we can close this node in the HSDAG. The second option

to resolve CS2 is to delete c7. In this case we have determined the

third minimal diagnosis which is ∆3 = {c6, c7}.

In our working example we are able to enumerate all possible di-

agnoses that help to restore consistency. However, the calculation of

all minimal diagnoses is expensive and thus in many cases not practi-

cable for interactive settings. Since users are often interested in a re-

duced subset of all the potential diagnoses, alternative algorithms are

needed that are capable of identifying preferred diagnoses [5, 9, 17].

Such approaches have already been developed [5, 9], however, they

are still based on the resolution of conflict sets which is computa-

tionally expensive (see Section 5). Our idea presented in this paper

is a diagnosis algorithm that helps to determine preferred diagnoses

without the need of calculating the corresponding conflict sets. The

basic properties of FASTDIAG will be discussed in Section 4.

4 Calculating Preferred Diagnoses with FASTDIAG

Preferred Diagnoses. Users typically prefer to keep the impor-

tant requirements and to change or delete (if needed) the less impor-

tant ones [13]. The major goal of (model-based) diagnosis tasks is to

identify the preferred (leading) diagnoses which are not necessarily

22

Figure 1. HSDAG (Hitting Set Directed Acyclic Graph) [17] for the CR
diagnosis problem (CR={c5, c6, c7}, CKB={c1, c2, c3, c4}). The sets {c5,
c6}, {c6, c7}, and {c5, c7} are the minimal diagnoses – the conflict sets
CS1, CS2, and CS3 are determined on the basis of QUICKXPLAIN [13].

minimal cardinality ones [5]. For the characterization of a preferred

diagnosis we will rely on the definition of a total ordering of the given

set of constraints in C (respectively CR). Such a total ordering can be

achieved, for example, by directly asking the customer regarding the

preferences, by applying multi-attribute utility theory [1, 20] where

the determined interest dimensions correspond with the attributes of

CR or by applying the rankings determined by conjoint analysis [2].

The following definition of a lexicographical ordering (Definition 6)

is based on total orderings for constraints that has been applied in

[13] for the determination of preferred conflict sets.

Definition 6 (Total Lexicographical Ordering). Given a total or-

der < on C, we enumerate the constraints in C in increasing < order

c1.. cn starting with the least important constraints (i.e., ci < cj ⇒ i

< j). We compare two subsets X and Y of C lexicographically:

X >lex Y iff

∃k: ck ∈ Y - X and

X ∩ {ck+1, ..., ct} = Y ∩ {ck+1, ..., ct}.

Based on this definition of a lexicographical ordering, we can now

introduce the definition of a preferred diagnosis.

Definition 7 (Preferred Diagnosis). A minimal diagnosis ∆ for

a given CR diagnosis problem (CR, CKB) is a preferred diagnosis

for (CR, CKB) iff there does not exist another minimal diagnosis ∆′

with ∆′ >lex ∆.

In our working example we assumed the lexicographical order-

ing (c5 < c6 < c7), i.e., the most important customer requirement is

c7 (the 4-wheel functionality). If we assume that X = {c5, c7} and

Y = {c6, c7} then Y -X = {c6} andX∩{c7} = Y ∩{c7}. Intuitively,
{c5, c7} is a preferred diagnosis compared to {c6, c7} since both di-

agnoses include c7 but c5 is less important than c6. If we change the

ordering to (c7 < c6 < c5), FASTDIAG would then determine {c6, c7}

as the preferred minimal diagnosis.

FASTDIAG Approach. For the following discussions we intro-

duce the set AC = CKB ∪CR which represents the union of customer

requirements (CR) and the configuration knowledge base (CKB).

The basic idea of the FASTDIAG algorithm (Algorithm 1) is the fol-

lowing.3 In our working example, the set of customer requirements

CR = {c5, c6, c7} includes at least one minimal diagnosis since CKB

is consistent and CKB ∪ CR is inconsistent. In the worst case CR it-

self represents the minimal diagnosis which would mean that all con-

straints in CR are part of the diagnosis, i.e., each ci ∈ CR represents

a singleton conflict. In our case CR obviously does not represent a

3 In Algorithm 1 we use the set C instead of CR since the application of the
algorithm is not restricted to inconsistent sets of customer requirements.

Figure 2. FASTDIAG execution trace for the CR diagnosis problem
(CR={c5, c6, c7}, CKB={c1, c2, c3, c4}).

minimal diagnosis – the set of diagnoses in our working example is

{∆1 = {c5, c6}, ∆2 = {c5, c7}, ∆3 = {c6, c7}} (see Section 3). The

next step in Algorithm 1 is to divide the set of customer requirements

CR = {c5, c6, c7} into the two sets C1 = {c5} and C2 = {c6, c7} and

to check whether AC - C1 is already consistent. If this is the case, we

can omit the set C2 since at least one minimal diagnosis can already

be identified in C1. In our case, AC - {c5} is inconsistent, which

means that we have to consider further elements from C2. Therefore,

C2 = {c6, c7} is divided into the sets {c6} and {c7}. In the next step

we can check whether AC – (C1 ∪ {c6}) is consistent – this is the

case which means that we do not have to further take into account

{c7} for determining the diagnosis. Since {c5} does not include a

diagnosis but {c5} ∪ {c6} includes a diagnosis, we can deduce that

{c6} must be part of the diagnosis. The final step is to check whether

AC – {c6} leads to a diagnosis without including {c5}. We see that

AC – {c6} is inconsistent, i.e., ∆ = {c5, c6} is a minimal diagnosis

for the CR diagnosis problem (CR = {c5, c6, c7}, CKB = {c1, . . . ,

c4}). An execution trace of the FASTDIAG algorithm in the context

of our working example is shown in Figure 2.

Algorithm 1 − FASTDIAG

1 func FASTDIAG(C ⊆ AC,AC = {c1..ct}) : diagnosis∆
2 if isEmpty(C) or inconsistent(AC − C) return ∅
3 else return FD(C,AC);

4 func FD(C = {c1..cq}, AC) : diagnosis ∆
5 if consistent(AC) return ∅;
6 if singleton(C) return C;

7 k =
n

2
;

8 C1 = {c1..ck};C2 = {ck+1..cq};
9 D1 = FD(C2, AC − C1);

10 D2 = FD(C1, AC −D1);
11 return(D1 ∪D2);

Calculating n>1 Diagnoses. In order to be able to calculate n>1

diagnoses4 with FASTDIAG we have to adopt the HSDAG construc-

tion introduced in [17] by substituting the resolution of conflicts (see

Figure 1) with the deletion of elements ci from CR (C) (see Figure

3). In this case, a path in the HSDAG is closed if no further diag-

noses can be identified for this path or the elements of the current

path are a superset of an already closed path (containment check).

Conform to the HSDAG presented in [17], we expand the search tree

4 Typically a CR diagnosis problem has more than one related diagnosis.

23

in a breadth-first manner. In our working example, we can delete

{c5} (one element of the first diagnosis ∆1 = {c5, c6}) from the

set CR of diagnosable elements and restart the algorithm for finding

another minimal diagnosis for the CR diagnosis problem ({c6, c7},

CKB). Since AC - {c5} is inconsistent, we can conclude that CR =

{c6, c7} includes another minimal diagnosis (∆2 = {c6, c7}) which is

determined by FASTDIAG for the CR diagnosis problem (CR - {c5},

CKB). Finally, we have to check whether the CR diagnosis problem

({c5, c7}, CKB) leads to another minimal diagnosis. This is the case,

i.e., we have identified the last minimal diagnosis which is∆3 = {c5,

c7}. The calculation of all diagnoses in our working example on the

basis of FASTDIAG is depicted in Figure 3.

Note that for a given set of constraints (C) FASTDIAG always cal-

culates the preferred diagnosis in terms of Definition 7. If ∆1 is the

diagnosis returned by FASTDIAG and we delete one element from

∆1 (e.g., c5), then FASTDIAG returns the preferred diagnosis for the

CR diagnosis problem ({c5, c6, c7}-{c5}, {c1, ..., c7}) which is ∆2

in our example case, i.e., ∆1>lex∆2. Consequently, diagnoses part

of one path in the search tree (such as ∆1 and ∆2 in Figure 3) are

in a strict preference ordering. However, there is only a partial order

between individual diagnoses in the search tree in the sense that a di-

agnosis at level k is not necessarily preferable to a diagnosis at level

k+1.

Figure 3. FASTDIAG: calculating the complete set of minimal diagnoses.

FASTDIAG Properties. A detailed listing of the basic operations

of FASTDIAG is shown in Algorithm 1. First, the algorithm checks

whether the constraints in C contain a diagnosis, i.e., whether AC - C

is consistent – the function assumes that it is activated in the case that

AC is inconsistent. If AC - C is inconsistent or C =∅, FASTDIAG re-

turns the empty set as result (no solution can be found). If at least

one diagnosis is contained in the set of constraints C, FASTDIAG ac-

tivates the FD function which is in charge of retrieving a preferred

diagnosis. FASTDIAG follows a divide-and-conquer strategy where

the recursive function FD divides the set of constraints (in our case

the elements of CR) into two different subsets (C1 and C2) and tries

to figure out whether C1 already contains a diagnosis. If this is the

case, FASTDIAG does not further take into account the constraints in

C2. If only one element is remaining in the current set of constraints

C and the current set of constraints in AC is still inconsistent, then

the element in C is part of a minimal diagnosis. FASTDIAG is com-

plete in the sense that if C contains exactly one minimal diagnosis

then FD will find it. If there are multiple minimal diagnoses then one

of them (the preferred one – see Definition 7) is returned. The recur-

sive function FD is triggered if AC-C is consistent and C consists of

at least one constraint. In such a situation a corresponding minimal

diagnosis can be identified. If we assume the existence of a mini-

mal diagnosis ∆ that can not be identified by FASTDIAG, this would

mean that there exists at least one constraint ca in C which is part

of the diagnosis but not returned by FD. The only way in which ele-

ments can be deleted from C (i.e., not included in a diagnosis) is by

the return ∅ statement in FD and ∅ is only returned in the case that

AC is consistent which means that the elements of C2 (C1) from the

previous FD incarnation are not part of the preferred diagnosis. Con-

sequently, it is not possible to delete elements from C which are part

of the diagnosis. FASTDIAG computes only minimal diagnoses in the

sense of Definition 5. If we assume the existence of a non-minimal

diagnosis ∆ calculated by FASTDIAG, this would mean that there

exists at least one constraint ca with∆ - {ca} is still a diagnosis. The

only situation in which elements of C are added to a diagnosis∆ is if

C itself contains exactly one element. If C contains only one element

(let us assume ca) and AC is inconsistent (in the function FD) then

ca is the only element that can be deleted from AC, i.e., ca must be

part of the diagnosis.

5 Evaluation

Performance of FASTDIAG. In this section we will compare the

performance of FASTDIAG with the performance of the hitting set

algorithm [17] in combination with the QUICKXPLAIN conflict de-

tection algorithm introduced in [13].

The worst case complexity of FASTDIAG in terms of the number

of consistency checks needed for calculating one minimal diagno-

sis is 2d·log2(
n

d
)+2d, where d is the minimal diagnoses set size and

n is the number of constraints (in C). The best case complexity is

log2(
n
d
)+2d. In the worst case each element of the diagnosis is con-

tained in a different path of the search tree: log2(
n
d
) is the depth of the

path, 2d represents the branching factor and the number of leaf-node

consistency checks. In the best case all elements of the diagnosis are

contained in one path of the search tree.

The worst case complexity of QUICKXPLAIN in terms of con-

sistency checks needed for calculating one minimal conflict set is

2k·log2(
n
k
)+2k where k is the minimal conflicts set size and n is

again the number of constraints (in C) [13]. The best case complex-

ity of QUICKXPLAIN in terms of the number of consistency checks

needed is log2(
n
k
)+2k [13]. Consequently, the number of consistency

checks per conflict set (QUICKXPLAIN) and the number of consis-

tency checks per diagnosis (FASTDIAG) fall into a logarithmic com-

plexity class.

Let ncs be the number of minimal conflict sets in a constraint set

and ndiag be the number of minimal diagnoses, then we need ndiag

FD calls (see Algorithm 1) plus ncs additional consistency checks

and ncs activations of QUICKXPLAIN with ndiag additional consis-

tency checks for determining all diagnoses. The results of a per-

formance evaluation of FASTDIAG are depicted in the Figures 4–7.

The basis for these evaluations were generated constraint sets (t =

100 constraints with a randomized lexicographical ordering and n =

100 variables) with a varying number of conflict sets (of cardinal-

ity 1–4) and corresponding diagnoses (#diagnoses between 3 – 22).

The constraint solver used for consistency checking was CHOCO

(choco.emn.fr) and the tests have been executed on a standard desk-

top computer (Intel(R) Core(TM)2 Quad CPU QD9400 CPU with

2.66Ghz and 2GB RAM).

Figure 4 shows a comparison between the hitting set based diag-

nosis approach (denoted as HSDAG) and the FASTDIAG algorithm

(denoted as FASTDIAG) in the case that only one diagnosis is cal-

culated. FASTDIAG clearly outperforms the HSDAG approach inde-

pendent of the way in which diagnoses are calculated (breadth-first or

best-first). Figure 5 shows the performance evaluation for calculating

the topmost-5 minimal diagnoses. The result is similar to the one for

calculating the first diagnosis, i.e., FASTDIAG outperforms the two

HSDAG versions. Our evaluations show that FASTDIAG is very ef-

ficient in calculating preferred minimal diagnoses. In contrast to the

HSDAG-based best-first search mode FASTDIAG has a performance

24

Figure 4. Calculating the first minimal diagnosis with FASTDIAG vs. hitting set based diagnosis on the basis of QUICKXPLAIN.

Figure 5. Calculating the topmost-5 minimal diagnoses with FASTDIAG vs. hitting set based diagnosis on the basis of QUICKXPLAIN.

that makes it an excellent choice for interactive settings.

Empirical Evaluation. Based on a computer configuration dataset

of the Graz University of Technology (N = 415 configurations) we

evaluated the three presented approaches w.r.t. their capability of pre-

dicting diagnoses that are acceptable for the user (diagnoses leading

to selected configurations). Each entry of the dataset consists of a set

of initial user requirements CR inconsistent with the configuration

knowledge base CKB and the configuration which had been finally

selected by the user. Since the original requirements stored in the

dataset are inconsistent with the configuration knowledge base, we

could determine those diagnoses that indicated which minimal sets

of requirements have to be deleted or adapted in order to be able to

find a solution.

We evaluated the prediction accuracy of the three diagnosis ap-

proaches (HSDAG breadth-first, FASTDIAG, and HSDAG best-first).

First, we measured the distance between the predicted position of a

diagnosis leading to a selected configuration and the expected po-

sition of the diagnosis (which is 1). This distance was measured

in terms of the root mean square deviation – RMSD (see Formula

1). Table 1 depicts the results of this first analysis. An important

result is that FASTDIAG has the lowest RMSD value (0.95). Best-

first HSDAG has a similar prediction quality (RMSD = 0.97). Fi-

nally, breadth-first HSDAG has the worst prediction quality (RMSD

= 1.64).5

RMSD =

√

√

√

√

1

n

n
∑

1

(predicted position− 1)2 (1)

breadth-first (HSDAG) FASTDIAG best-first (HSDAG)

1.64 0.95 0.97

Table 1. Root Mean Square Deviation (RMSD) of the diagnosis
approaches.

6 Related Work

The authors of [8] introduce an algorithm for the automated debug-

ging of configuration knowledge bases. The idea is to combine a

conflict detection algorithm such as QUICKXPLAIN [13] with the

hitting set algorithm used in model-based diagnosis (MBD) [17] for

the calculation of minimal diagnoses. In this context, conflicts are

induced by test cases (examples) that, for example, are stemming

5 A more detailed analysis of the prediction quality of the algorithm will be
given in an extended version of this paper.

25

from previous configuration sessions, have been automatically gen-

erated, or have been explicitly defined by domain experts. Further ap-

plications of MBD in constraint set debugging are introduced in [7]

where diagnosis concepts are used to identify minimal sets of faulty

transition conditions in state charts and in [10] where MBD is ap-

plied for the identification of faulty utility constraint sets in the con-

text of knowledge-based recommendation. In contrast to [7, 8, 10],

our work provides an algorithm that allows to directly determine di-

agnoses without the need to determine corresponding conflict sets.

FASTDIAG can be applied in knowledge engineering scenarios for

calculating preferred diagnoses for faulty knowledge bases given that

we are able to determine reasonable ordering for the given set of con-

straints – this could be achieved, for example, by the application of

corresponding complexity metrics [4].

In contrast to the algorithm presented in this paper, calculating

diagnoses for inconsistent requirements typically relies on the ex-

istence of (minimal) conflict sets. A well-known algorithm with a

logarithmic number of consistency checks depending on the number

of constraints in the knowledge base and the cardinality of the mini-

mal conflicts – QUICKXPLAIN [13] – has made a major contribution

to more efficient interactive constraint-based applications. QUICKX-

PLAIN is based on a divide-and-conquer strategy. FASTDIAG relies

on the same principle of divide-and-conquer but with a different fo-

cus, namely the determination of minimal diagnoses. QUICKXPLAIN

calculates minimal conflict sets based on the assumption of a linear

preference ordering among the constraints. Similarly – if we assume

a linear preference ordering of the constraints in C – FASTDIAG cal-

culates preferred diagnoses.

The authors of [16] focus on interactive settings where users of

constraint-based applications are confronted with situations where

no solution can be found. In this context, [16] introduce the concept

of minimal exclusion sets which correspond to the concept of mini-

mal diagnoses as defined in [17]. As mentioned, the major focus of

[16] are interactive settings where the proposed algorithm supports

users in the identification of acceptable exclusion sets. The authors

propose an algorithm (representative explanations) that helps to im-

prove the quality of the presented exclusion set and thus increases

the probability of finding an acceptable exclusion set for the user.

Our diagnosis approach calculates preferred diagnoses in terms of

a predefined ordering of the constraint set. Thus – compared to the

work of [16] – we follow a different approach in terms of focusing

more on preferences than on the degree of representativeness.

Many of the existing diagnosis approaches do not take into ac-

count the need for personalizing the set of diagnoses to be presented

to a user. Identifying diagnoses of interest in an efficient manner is a

clear surplus regarding the acceptance of the underlying application.

A first step towards the application of personalization concepts in

the context of knowledge-based recommendation is presented in [9].

The authors introduce an approach that calculates leading diagnoses

on the basis of similarity measures used for determining n-nearest

neighbors. A general approach to the identification of preferred di-

agnoses is introduced in [5] where probability estimates are used to

determine the leading diagnoses with the overall goal to minimize

the number of measurements needed for identifying a malfunction-

ing device. We see our work as a major contribution in this context

since FASTDIAG helps to identify leading diagnoses more efficiently

– further empirical studies in different application contexts are within

the major focus of our future work.

7 Conclusion

In this paper we have introduced a new diagnosis algorithm

(FASTDIAG) which allows the efficient calculation of one diagno-

sis at a time with logarithmic complexity in terms of the number of

consistency checks. Thus, the computational complexity for the cal-

culation of one minimal diagnosis is equal to the calculation of one

minimal conflict set in hitting set based diagnosis approaches. The

algorithm is especially applicable in settings where the number of

conflict sets is equal to or larger than the number of diagnoses, or in

settings where preferred (leading) diagnoses are needed.

References

[1] L. Ardissono, A. Felfernig, G. Friedrich, D. Jannach, G. Petrone,
R. Schäfer, and M. Zanker. A Framework for the development of per-
sonalized, distributed web-based configuration systems. AI Magazine,
24(3):93–108, 2003.

[2] F. Belanger. A conjoint analysis of online consumer satisfaction. Jour-

nal of Electronic Commerce Research, 6:95–111, 2005.
[3] L. Castillo, D. Borrajo, and M. Salido. Planning, Scheduling and Con-

straint Satisfaction: From Theory to Practice. IOS Press, 2005.
[4] Z. Chen and C. Suen. Measuring the complexity of rule-based expert

systems. Expert Systems with Applications, 7(4):467–481, 2003.
[5] J. DeKleer. Using crude probability estimates to guide diagnosis. AI

Journal, 45(3):381–391, 1990.
[6] J. DeKleer, A. Mackworth, and R. Reiter. Characterizing diagnoses and

systems. AI Journal, 56(2–3):197–222, 1992.
[7] A. Felfernig, G. Friedrich, K. Isak, K. Shchekotykhin, E. Teppan, and

D. Jannach. Automated debugging of recommender user interface de-
scriptions. Journal of Applied Intelligence, 31(1):1–14, 2007.

[8] A. Felfernig, G. Friedrich, D. Jannach, and M. Stumptner. Consistency-
based diagnosis of configuration knowledge bases. AI Journal,
152(2):213–234, 2004.

[9] A. Felfernig, G. Friedrich, M. Schubert, M. Mandl, M. Mairitsch, and
E. Teppan. Plausible repairs for inconsistent requirements. In 21st

International Joint Conference on Artificical Intelligence (IJCAI’09),
pages 791–796, Pasadena, CA, 2009.

[10] A. Felfernig, G. Friedrich, E. Teppan, and K. Isak. Intelligent debug-
ging and repair of utility constraint sets in knowledge-based recom-
mender applications. In 13th ACM International Conference on Intel-

ligent User Interfaces (IUI’08), pages 218–226, Canary Islands, Spain,
2008.

[11] G. Fleischanderl, G. Friedrich, A. Haselboeck, H. Schreiner, and
M. Stumptner. Configuring large systems using generative constraint
satisfaction. IEEE Intelligent Systems, 13(4):59–68, 1998.

[12] G. Friedrich and K. Shchekotykhin. A general diagnosis method for
ontologies. In 4th International Semantic Web Conference (ISWC’05),
number 3729 in Lecture Notes in Computer Science, pages 232–246,
Galway, Ireland, 2005. Springer.

[13] U. Junker. Quickxplain: Preferred explanations and relaxations for
over-constrained problems. In 19th National Conference on Artificial

Intelligence (AAAI’04), pages 167–172, San Jose, CA, 2004.
[14] J. Marques-Silva and K. Sakallah. Grasp: A new search algorithm for

satisfiability. In International Conference on Computer-Aided Design,
pages 220–227, Santa Clara, CA, 1996.

[15] S. Mittal and F. Frayman. Towards a generic model of con
guration tasks. In 11th International Joint Conference on Arti

cial Intelligence (IJCAI’89), pages 1395–1401, Detroit, MI, 1989.
[16] Barry O’Sullivan, A. Papdopoulos, B. Faltings, and P. Pu. Represen-

tative explanations for over-constrained problems. In 22nd National

Conference on Artificial Intelligence (AAAI’07), pages 323–328, Van-
couver, Canada, 2007.

[17] R. Reiter. A theory of diagnosis from first principles. AI Journal,
23(1):57–95, 1987.

[18] C. Sinz and A. Haag. Configuration. IEEE Intelligent Systems,
22(1):78–90, 2007.

[19] E. Tsang. Foundations of Constraint Satisfaction. Academic Press,
1993.

[20] D. Winterfeldt and W. Edwards. Decision analysis and behavioral re-
search. Cambridge University Press, 1986.

26

On Classification and Modeling Issues in
Distributed Model-based Diagnosis

Franz Wotawa and Ingo Pill1,2

Abstract. With model-based diagnosis, diagnoses for occurring

faults can be directly computed from given observations and a sys-

tem model. Model-based diagnosis has been successfully accommo-

dated to several purposes, including for instance the diagnosis of

space probes and configuration knowledge bases. Recent research

includes also extensions for distributed systems, motivated by the

ever-growing system complexity and inherently distributed domains

like service-oriented architectures. Previous work in this respect

lacks however a detailed analysis and classification approach for dis-

tributed diagnosis, that considers essential underlying issues like di-

agnosis architecture, utilized models, and abstract requirements that

might stem from the application domain. In this paper, we will show

an analysis of distributed system diagnosis and a classification in the

three dimensions mentioned.

1 INTRODUCTION

Model-based diagnosis [9, 10, 29] is a diagnosis approach that al-

lows deriving possible root causes for certain misbehavior from a

system’s model and actual observations. The concept of model-based

diagnosis has gained a lot of attention during the past decades, and

several applications have been reported. These include software de-

bugging [23, 24], as well as the diagnosis of space probes [36, 28],

cars [21, 22], and configuration knowledge bases [11]. In ”classical”

model-based diagnosis, a diagnosis algorithm, for example Reiter’s

hitting set algorithm [29, 14] or GDE [10], takes the system model as

well as available observations about actual system behavior, and de-

rives possible diagnoses with respect to optimization criteria like di-

agnosis probability and size. Even in the case of distributed systems

with subsystems connected via communication channels, all obser-

vations, as well as the system model, have to be stored and processed

centralizedly.

The drawbacks of such a centralized approach have been the sub-

ject of academic discussion, e.g. [34]. For instance, as the (single)

considered state space is usually aggregated from those of its sub-

systems, the considered space is substantially larger than when con-

sidering components locally. Since, in the worst case, diagnosis com-

putation is exponential in the size of considered components, this is a

severe computational issue. Inherently, also the robustness of the di-

agnostic reasoning process is weaker. A failure in the centralized di-

agnoser leads to a complete crash of the diagnostic reasoning. More-

over, a centralized approach might also suffer from poor scalability.

Changes in the structure might require the centralized diagnoser it-

self to be changed, where it is even possible that the whole diagnoser

has to be rebuilt. However, depending on the situation, a centralized

1 Graz University of Technology, Austria, email: {wotawa,pill}@ist.tugraz.at
2 Authors are listed in reverse alphabetical order.

diagnoser might not always be a bad choice. If the system is not phys-

ically distributed, or if there are special requirements like storing all

failure-related data in one place, there might be no reason to use a

distributed diagnosis approach.

Despite the varying needs for diagnostic reasoning in different

distributed settings, to our knowledge, there is no systematic study

regarding an analysis and classification of approaches considering

essential features like architecture, utilized models, and application

related issues. Even worse, the term ”distributed diagnosis” is over-

loaded and refers to very different scenarios as illustrated in the fol-

lowing.

Distributed diagnosis might be used for example for diagnosing a

system that comprises independent but interconnected subsystems,

where each one has a corresponding local diagnoser. While the ap-

plication seems to be almost the same as the diagnosis of a team of

collaborating robots, there are subtle but essential differences. These

differences lead to the fact that distributed diagnosis algorithms and

systems that suit one domain, cannot be used for the other; but let us

discuss an example for such an issue in detail.

In the case of the distributed system with channels for subsystem

communication, original observations about system and environment

attributes are most likely to be local to the corresponding subsystem

(but are communicated afterwards). Hence, even in the case of dis-

tributing an observation by communication, it could not conflict with

other (original) measurements of the same attribute. A corresponding

application area could be that of industrial transportation systems as

diagnosed centralizedly in [26].

This is different from the case of a team of autonomous robots that

are equipped with sensors measuring the same or similar physical at-

tributes. In this case, one robot might measure ambient temperature

to be too high, while another one measures it to be in normal range.

With independent consideration by each robot, this might lead to dif-

fering behavior that impacts overall performance. Aggregating local

diagnoses might lead to deductions that stem from local diagnoses

that are not compatible. Thus, an essential difference between the

two domain variants is that in one case there are no contradictions

between available (possibly communicated) observations, while in

the other, local observations might contradict each other. In the lat-

ter case, thus (optional) inconsistency of local observations has to

be taken into account in order to handle such cases correctly. Such

essential differences illustrate the need for a deep analysis and clas-

sification of distributed diagnosis, as well as the necessity of defining

the term distributed diagnosis and its aspects in detail.

Besides those already mentioned, there is a multitude of appli-

cations for distributed diagnosis, including settings that make use of

service-oriented architectures (SOAs). SOAs aggregate numerous in-

stances of web services, brokers, message busses, mediators, moni-

27

tors, and other components that might be physically distributed over

vast distances. In such settings a distributed diagnosis approach has

significant advantages in respect of intellectual property disclosure

and dynamic reconfiguration of services. While a company might be

willing to provide an interface offering diagnostic data for a service,

due to business and security reasons they might not want to disclose

all the internal details necessary for customers to develop effective

models on their own. Dynamic reconfiguration of services can be ac-

commodated by corresponding exchanges of the local diagnosers.

Another application is suggested by our example of autonomous

robot teams. Settings with teams of collaborating autonomous sys-

tems might make use of distributed knowledge bases [31, 32]. Con-

sidering for instance data communication bandwidth or robustness,

a distributed approach for the diagnosis of the underlying distributed

knowledge base might be of advantage in such settings.

In Figure 1, we depict the architecture of a spatially distributed

diagnosis system. It comprises two or more local diagnosis systems,

each of which has a diagnosis engine DEi, a model SDi of the under-

lying (sub-)system, and a set of observations OBSi. The latter repre-

sents grounded facts that are obtained from sensor information after

filtering and symbol grounding. It is worth noting that, due to sens-

ing failures and sensor noise, sensed observations might not reflect

reality. However, they are the only information available for diag-

nostic reasoning. Another part of the discussed distributed diagnosis

architecture is the global diagnosis engine. This engine is used for

combining the local diagnoses and might be used also for communi-

cating observations between the local diagnosis engines (if required).

Note that in general, there is no requirement to have a global diagno-

sis engine (or global diagnoser) in the context of distributed diagno-

sis. Computing global diagnoses is also possible via communicating

local diagnoses among the local diagnosis engines. In this case, the

global diagnosis engine in Fig. 1 might be reduced to a communica-

tion backbone for the exchange of diagnosis results.

!"#$%&"'(")*+*,-./0

Figure 1. The distributed diagnosis architecture

In contrast to the single system model diagnosis approach, all dis-

tributed diagnosis systems have in common that they make use of

local models and local diagnosis engines. Specifically, all these ap-

proaches aim at computing global diagnoses from local ones without

relying on a global model. Hence, we define a distributed diagno-

sis system as a system aggregating local diagnosis engines (or local

diagnosers), using local models and (not necessarily local) observa-

tions for the computation of local diagnoses. Subsequently, these lo-

cal diagnoses are used to derive global ones. In this paper we will

characterize such distributed diagnosis systems according to the un-

derlying architecture, utilized models, and the relationship between

the local models. The motivation of this paper is to analyze previous

work in the domain of distributed diagnosis, the discussion of re-

lated modeling issues, and outlining a characterization of distributed

diagnosis systems with respect to several essential aspects. The re-

mainder of this document is structured as follows. In Section 2, we

discuss related research, followed by an analysis of related modeling

issues presented in Section 3. Section 4 contains our analysis of the

distributed diagnosis problem itself and related definitions. In Sec-

tion 5 we discuss our characterization of distributed diagnosis sys-

tems, while in Section 6 we draw our conclusion and give directions

for future work.

2 RELATED RESEARCH

In [19], Kurien et al. introduced a basic formalism for distributed

diagnosis that is based on information interchange between local di-

agnosers, where the intersection between the local component sets is

empty. Local diagnoses with their corresponding value assignments

are communicated to negotiate diagnoses that all local diagnosers

agree on. In this process, inconsistencies between diagnoses from

different local diagnosers are used to reduce the set of possible as-

signments. Thus, their approach can be classified as a distributed and

decentralized approach that is based on local diagnosis systems inter-

acting via shared connections and sharing global observations. The

content of Kurien et al.’s paper is most closely to the one discussed

in this paper. Similar work includes Wonham et al. [34] and Diagle

et al. [8], the latter tackling the task of diagnosis in the context of

mobile robots which is a very interesting domain as discussed in the

introduction.

Other work in the domain of mobile robot diagnosis, specifically

in the context of mobile robot interaction for achieving a common

goal, includes [17]. In this paper, Kalech et al. describe an approach

using distributed algorithms for the localization of faults in the team

coordination. While their work is mainly focused on their particular

problem domain, we are interested in classifying and solving dis-

tributed diagnosis in general.

Some colleagues outlined distributed diagnosis in the context of

discrete event systems [20]. In [3], Baroni et al. extended their pre-

vious work on diagnosis of active systems [2] to the distributed case.

Guillou et al. introduced in [15] the use of chronicles for distributed

diagnosis, based on previous work of the same group [7]. The lat-

ter paper shows how incremental and decentralized diagnosis can

be implemented effectively. Most recently, Ribot et al. discussed in

[30] the use of design requirements that enable the diagnosability of

discrete event systems. This work is of particular interest regarding

practical applications, because it addresses the issue of how to con-

struct system models so that the system can be diagnosed afterwards.

In our work we follow very closely Reiter’s model-based diagnosis

theory [29], with the objective of extending it to the distributed case.

For previous work in this respect, we refer the interested reader to

28

[37] where we discussed challenges regarding distributed diagnosis

and an extension of Reiter’s theory.

Practical issues like enabling diagnosis under real-time require-

ments have also been discussed in literature. In [5], Chung and Bar-

rett presented the distributed on-line diagnosis of spacecrafts under

real-time constraints. Their approach combines model-based diagno-

sis with rule-based systems, where the underlying idea is to compile

models into rules that can be used on-line. The advantage is that in

this case, diagnosis time can be estimated and guaranteed, so that

these rules can be used efficiently in critical real-time systems.

3 MODELING

In this section, we discuss modeling issues relevant for model-

based diagnosis. Although there is more than one approach for

system behavior modeling, most of them rely on the well known

component-connection modeling paradigm (CCMP) for practical

reasons. CCMP requires the definition of the system’s structure and

behavior, where system behavior is defined by the behavior of each

(sub-)component and interconnecting ports for information exchange

between components. Usually components with the same behavior

are defined as instances of a component class, which eases mainte-

nance.

According to Reiter’s original theory of diagnosis [29], only the

correct behavior of components has to be given in a model. Such

an approach comes with the advantage of not requiring knowledge

about possible faults and their consequences. And indeed, there are

many applications where either no fault models are available, or

where there are too many possible fault modes. However, as Struss

et al. indicate in [33], there are cases where, if consistency-based di-

agnosis considers only definitions of correct behavior, this leads to

the computation of diagnoses with no representation in the physical

world. Hence, computed diagnoses, although correct with respect to

the used model, are incorrect when considering reality. In order to

solve this problem, Struss et al. suggested to introduce fault mod-

els. Console et al. discussed in [6] the close relationship between

abduction and deduction. In particular, using [6] we can state that

consistency-based diagnosis using fault models is computationally

equivalent to abduction-based diagnosis.

Motivated by the impact on computational complexity that is en-

tailed by introducing fault models, Gottlob et al. suggested to add

physical impossibilities to models [13]. A physical impossibility is a

behavioral rule that has to be fulfilled in all circumstances, and de-

scribes the relationship between connection values and the status of

components. For example, let us consider an electronic circuit that

comprises a battery and two parallel bulbs. If we observe that one

bulb shines while the other does not, we are able to conclude that

(a) the battery works correctly and that (b) the bulb not shining is

broken. This results from the fact that the battery has to be working,

as without power no bulb could shine. Lacking corresponding fault

models, we can use physical impossibilities to obtain the same effect.

We state that it cannot be the case that the battery is not working (or

not providing voltage) if a bulb is shining. From a more general per-

spective, physical impossibilities are similar to invariants, e.g. loop

invariants or class invariants as used in verification. We follow this

more general term of invariants and consider physical impossibilities

as system invariants. Such system invariants have only little influence

on the computational complexity, but contradict CCMP as they are

not assigned to a component but to the system itself.

An extension to CCMP is the concept of hierarchical models. A

model is called hierarchical, if a component model itself is imple-

mented using CCMP. Hence, if CCMP is used recursively to ag-

gregate a system from components, subcomponents, ..., as well as

necessary connections. Igor Mozetič was the first who published the

idea of hierarchical models [25]. Autio and Reiter [1] introduced a

formal definition of hierarchical models including results regarding

diagnosis capabilities. It is worth noting that hierarchical models are

used for two reasons. The first is related to the modeling process it-

self. Using hierarchical models, components can be modeled from

available simpler components, taking advantage of all the possibili-

ties entailed with modularization and related libraries. Hence, model-

ing becomes easier and more convenient. The other reason concerns

computational issues. On the top level, diagnosis has to consider only

a smaller set of components, due to the abstraction performed when

subsuming several components to form one hierarchical component.

Since, in the worst case, the computation of diagnoses is exponen-

tial in the number of components, structuring systems in a hierarchic

way saves computation time.

Academic literature offers some modeling languages for model-

based diagnosis. In [12, 16] the authors introduce the modeling lan-

guage AD2L that is based on CCMP, and allows describing system

models including fault models and system invariants. More recently,

Provan andWang [27, 35] suggested a benchmark generator and later

on a language for sharing models to be used for performance evalua-

tion of diagnosis algorithms.

In distributed diagnosis, (local) models follow the same principles

like models used in the non-distributed case. Hence, the models most

likely rely on CCMP and (not necessarily) implement fault models,

invariants, or hierarchical components. Having a closer look at the

underlying formal modeling methods, we see that they vary from

discrete event systems [20] to logic [29] and bond graphs [8]. The

reason for choosing a certain format might stem from the require-

ments regarding temporal aspects. If temporal reasoning is not nec-

essary at all, the modeling format can be simpler. In this case, even

simple horn-clause propositional logic might be sufficient.

4 DISTRIBUTED DIAGNOSIS

In this section, we will introduce several definitions which we will

use for the discussion of classification criteria for distributed diag-

nosis. In [29] Reiter introduced several formal definitions for model-

based diagnosis. While we will rely on those definitions in principle,

we will extend them to accommodate the scenario of distributed di-

agnosis.

Definition 1 (Diagnosis System) A diagnosis system DS is a tuple

(SD,COMP,CONN,PE, Ψ) where SD is a set of logical sentences

describing the system’s behavior, COMP is the set of components,

CONN the set of connections, PE the set of physical entities, andΨ is

a function mapping connections to their corresponding physical en-

tities. For simplicity, we assume the presence of functions comp(DS)
and conn(DS) that, given a diagnosis system, return the correspond-
ing sets of components and connections respectively.

The reason for separating connections from physical entities is that

this allows us to differentiate between entities at model level and

real (e.g. physical) system entities. This separation is necessary, so

that we can reason about scenarios, where two system parts measure

the same physical entity (e.g. ambient temperature), but do this in a

different way. Hence, in this case there might be inconsistencies in

the observations that have to be dealt with.

According to [29], a diagnosis problem comprises a diagnosis sys-

tem and a set of observations, where in the context of this paper, an

29

observation is an assignment of a value to a connection. In practice,

such observations are either stated by some user, or are derived from

sensors via symbol grounding. For computing the diagnoses, it is as-

sumed that observations and model are correct and reflect the real

world scenario. As without further knowledge the incorrectness of

observations cannot be stated, this is a useful assumption. However,

as we will see later, this might not be the case for distributed diagno-

sis systems where there might be more than one measurement of the

same physical attribute.

Regarding the definition of an actual diagnosis, compared to [29] we

give a slightly modified version in order to be self-compliant with

Definition 1.

Definition 2 (Diagnosis) Let (SD,COMP,CONN,PE, Ψ) be a di-

agnosis system and OBS be a set of observations. A set ∆ ⊆ COMP

is a diagnosis iff SD ∪ OBS ∪ {¬AB(C)|C ∈ COMP \ ∆} ∪
{AB(C)|C ∈ ∆} is satisfiable.

For our distributed scenario, we define a distributed diagnosis sys-

tem to be a set of local diagnosis systems that belong to a global

diagnosis system.

Definition 3 (Distributed Diagnosis System (DDS)) Let

(SD,COMP,CONN,PE, Ψ) be a global diagnosis system. A

set {DSi = (SDi,COMPi,CONNi,PE, Ψ)|i ∈ {1, . . . , n}} is a

distributed diagnosis system (DSS) comprising n local diagnosis

systems iff the following conditions are satisfied:

1. ∀n
i=1 : SDi ⊆ SD

2. (∪ n
i=1COMPi) = COMP

3. (∪ n
i=1CONNi) = CONN

The reason for binding the DDS to a global diagnosis system is that

this allows us to define the correctness and completeness of dis-

tributed diagnosis algorithms. It is worth noting that we use a global

set of physical entities for the local systems on purpose. This em-

phasizes the fact that some p ∈ PE might be shared, a situation that

might lead to problems with observations as discussed before. Fur-

thermore, for obvious reasons this set is equal to the set of physical

entities for the global diagnosis system.

In order to apply a diagnosis algorithm to a distributed diagnosis

problem, we first have to define this problem. Following the defini-

tion of a diagnosis problem, we state a distributed diagnosis problem

as follows:

Definition 4 (Distributed Diagnosis Problem) A distributed diag-

nosis problem comprises a DDS {DSi|i ∈ {1, . . . , n}} and a set of

observations {OBSi|i ∈ {1, . . . , n}} where OBSi are the observa-

tions for the corresponding local diagnosis system DSi.

One characterization of distributed diagnosis is that the local diag-

nosis systems from a DDS, and their corresponding observations,

are used to compute local diagnoses following Definition 2. Subse-

quently, these local diagnoses are combined to obtain global ones.

The correctness and completeness of such an algorithm depends on

the integration mechanism utilized. Formally, we are able to define

the correctness and completeness with respect to global and local

models as well as global and local observations. Note that in gen-

eral, due to possible inconsistencies, the set of global observations

cannot be obtained by taking the union of local observations. Sim-

ple approaches like majority vote or using fault probabilities defined

statically by a sensor’s characteristics or dynamically by fault history,

as well as more elaborate approaches like [18] provide the means to

resolve such inconsistencies [4].

Definition 5 (Correctness, Completeness) Let

(SD,COMP,CONN,PE, Ψ) be a global diagnosis system,

{DSi|i ∈ {1, . . . , n}} its corresponding DDS, OBS the global

observations, and {OBSi|i ∈ {1, . . . , n}} the local observations.

A distributed diagnosis algorithm DD is correct iff all computed

diagnoses using the DDS and the local observations are also

diagnoses of the global diagnosis problem. A distributed diagnosis

algorithm DD is complete iff all global diagnoses are computed.

In Definition 5, correctness and completeness are defined using the

global diagnosis system as reference. The correctness and complete-

ness of already published distributed diagnosis algorithms usually re-

quires additional assumptions. For example, it is often assumed that

DDS do not share components and that local observations are never

in contradiction. While these assumptions are appropriate for sev-

eral domains, there are applications, like autonomous mobile robot

teams, where these assumptions are invalid. Consider, for instance,

our example of a team of robots working on the same task. Each

robot is perceiving the world via its sensors, and each robot’s diag-

nosis system is relying on its sensor information to reflect the state

of the real world. While the robots are perceiving the same physi-

cal entities, due to symbol grounding they might use different cor-

responding observations. Therefore, they do not share observations,

and as a consequence, local observations might be in contradiction.

Moreover, the robots may compute diagnoses that reflect their indi-

vidually perceived correctness or incorrectness of real world entities.

When each robot uses the same model, the intersection of considered

components is not empty. Hence, these assumptions are not valid in

this application domain, which has consequences on the choice re-

garding the use of a specific distributed diagnosis algorithm.

In order to let us characterize DDS and thus corresponding diagno-

sis algorithms, we further partition the space of DDS into subclasses.

We start with a DDS where the intersection of the local components

is empty.

Definition 6 (Partitioned DDS) A DDS {DSi|i ∈ {1, . . . , n}} is a

partitioned DDS iff

∀i, j ∈ {1, . . . , n} : i 6= j → comp(DSi) ∩ comp(DSj) = ∅.

In a partitioned DDS, the local diagnosis systems do not share any

component. In order to further divide the DDS space, we introduce

structural independent DDSs, where even no connections are shared.

Definition 7 (Structural Independent DDS) A partitioned DDS

{DSi|i ∈ {1, . . . , n}} is a structural independent DDS iff

∀i, j ∈ {1, . . . , n} : i 6= j → conn(DSi) ∩ conn(DSj) = ∅.

The definition of structural independence is not enough to ensure

that local observations are not in contradiction, due to different sen-

sor measurements used by the local diagnosis systems. To ensure

real independence in a distributed setting, we have to apply further

restrictions on the measured physical entities.

Definition 8 (Independent DDS) A structural independent DDS

{DSi|i ∈ {1, . . . , n}} is an independent DDS iff

∀i, j ∈ {1, . . . , n} : i 6= j →
{Ψ(c)|c ∈ conn(DSi)} ∩ {Ψ(d)|d ∈ conn(DSj)} = ∅.

In the case of an independent DDS, it is ensured that local observa-

tions cannot intersect. Hence, a simple algorithm that computes local

diagnoses and puts them together by computing all possible combi-

nations is correct and complete. For a structural independent DDS,

30

such a simple algorithm can only be used if the local observations

are never in contradiction.

A different branch of DDS, which occurs often in practice, is that

where a global diagnosis system is partitioned into connected sub-

systems. Many of todays systems like power supplies or telecommu-

nication networks fall into this category.

Definition 9 (Connected DDS) A partitioned DDS {DSi|i ∈
{1, . . . , n}} is a connected DDS iff

∀i ∈ {1, . . . , n} : ∃j ∈ {1, . . . , n} : i 6= j ∧
conn(DSi) ∩ conn(DSj) 6= ∅.

Let DDS be the set of all DDS, PDDS the set of partitioned

DDS, SIDSS the set of structural independent DDS, IDSS the set

of independent DDS, and CDSS the set of connected DDS. Then,

from the definitions above, we are able to easily identify the follow-

ing relationships:

Corollary 1 The following relationships hold for the different

classes of DDS:

• DSS ⊃ PDDS ⊃ SIDSS ⊃ IDSS

• PDDS ⊃ CDSS

• CDSS ∩ SIDSS = ∅

Note that, as the relationships directly follow from the definitions,

proofs are omitted.

5 CHARACTERIZING DISTRIBUTED
DIAGNOSIS SYSTEMS

After discussing modeling aspects in the context of model-based di-

agnosis, introducing the notions of the distributed diagnosis prob-

lems and related distributed diagnosis systems along several defini-

tions for a sensible classification, we are now able to characterize

distributed diagnosis. In the following, we will discuss this charac-

terization along three dimensions; modeling, classification of DDS,

and used architecture.

• Model: There are many modeling paradigms and modeling lan-

guages used in practice. One might use discrete event systems,

finite state machines, or a simple non-temporal logic for describ-

ing the behavior of a system. The underlying models might follow

the component-connection modeling paradigm, with or without

making use of physical impossibilities, fault models, or modeling

hierarchies. The different modeling paradigms and styles can be

used to characterize diagnosis systems and therefore also DDS. In

case of DDS, the choice of the modeling language and paradigm

has an impact on the partitioning of the local diagnosis models.

However, the choice has no direct influence on the combination

of local diagnoses in order to obtain global ones, if the local di-

agnosis engines only return subsets of components as diagnosis

candidates (as stated in definition of diagnosis: Def. 2). Never-

theless, the underlying modeling language and paradigm have an

impact on the choice of the underlying local diagnosis algorithm

and theorem provers used. Hence, a characterization of DDS ac-

cording to the model is useful to select the right local diagnosis

engine and theorem provers.

• DDS class: A distributed diagnosis problem that belongs to a

certain application area can be characterized according to the

DDS classes introduced in this paper. This characterization heav-

ily depends on the application scenario. In case of distributed au-

tonomous systems, a general DDS or a connected DDS might be

used because further restrictions do not apply. In case of networks

a clear separation of components is possible and observations can

be exchanged over the sharing connections only. Hence, a con-

nected DDS might be sufficient. Once a characterization of diag-

nosis algorithms according to DDS is available, such a classifi-

cation would allow to select correct and complete algorithms for

different problems. However, even when such a classification of

algorithms is not available, the characterization into DDS classes

helps to understand the problems that have to be tackled when

developing an algorithm. For example, in case of a structural in-

dependent DDS, someone has to be aware that there might be con-

tradicting observations, which have to be handled in the right way.

• Architecture: Regarding the implementation of DDS there are

two general architectures one can follow. The centralized dis-

tributed diagnosis is characterized by a central global diagnosis

engine that takes the local diagnosis results and combines them

to form global diagnoses. Such a centralized diagnosis engine is

also capable of distributing observations and performing measure-

ment selection. The advantage is that obtaining global diagnoses

is easier from the algorithmic point of view and that communica-

tion can be controlled globally, which might lead to less messages

necessary to obtain global diagnoses. The disadvantage is that the

approach is less robust. In case of a fault in the global diagno-

sis engine, there is no way of coming up with a global diagnostic

view.

In the decentralized architecture, the local diagnosis engines com-

municate their results and compute a global view without using

a central diagnosis engine. The advantage is that a decentralized

approach is more robust and that faults in one part should have

only local influence. However, there is a communication overhead

because all necessary information has to be communicated to all

connected subsystems.

6 CONCLUSION

In this paper, we discussed modeling aspects in the context of model-

based diagnosis, analyzed the distributed diagnosis problem, intro-

duced corresponding definitions, suggest a specific classification of

DDS, and propose a characterization of competing approaches re-

garding essential problem aspects. The three dimensions proposed

are modeling, classification of DDS, and used architecture. While a

lot of applications in the broad context of distributed diagnosis seem

to be similar, we showed by simple examples that there are signif-

icant differences that have to be taken into account when selecting

an appropriate algorithm for a specific problem. With our charac-

terization, we enable the selection of the right diagnosis algorithm

and architecture, given a distributed diagnosis problem in a certain

application area. Currently missing is a classification of already pub-

lished distributed diagnosis algorithms using the classifications given

in this paper. However, even without such a classification, the char-

acterization into DDS classes helps in understanding the problems

that have to be tackled when developing an algorithm. For example,

in the case of a structural independent DDS, we are made aware that

possibly contradicting observations have to be taken care of.

Future work will include classifying previous DDS approaches us-

ing our classification framework. Furthermore, we are interested in

providing algorithms including correctness and completeness proofs,

as well as in identifying specific algorithmic areas and aspects that

should be covered by future research. An important problem we will

tackle in future research is that of solving diagnosis problems for

autonomous mobile robots in a distributed way.

31

ACKNOWLEDGEMENTS

The work presented in the paper has been funded by the Austrian Sci-

ence Fund (FWF) under contract number P20199-N15. The authors

would also like to thank the reviewers for their valuable comments.

REFERENCES

[1] K. Autio and R. Reiter, ‘Structural abstraction in model-based diagno-
sis’, in 13th European Conference on Artificial Intelligence (ECAI), pp.
269–273, (1998).

[2] P. Baroni, G. Lamperti, P. Pogliano, and M. Zanella, ‘Diagnosis of large
active systems’, Artificial Intelligence, 110, 135–183, (1999).

[3] P. Baroni, G. Lamperti, P. Pogliano, and M. Zanella, ‘Diagnosis of a
class of distributed discrete-event systems’, IEEE Transactions on Sys-

tems, Man, and Cybernetics, Part A, 30(6), 731–752, (2000).
[4] R. R. Brooks and S.S. Iyengar, Multi-sensor fusion: fundamentals and

applications with software, 1998. ISBN 0-13-901653-8.
[5] S. H. Chung and A. Barrett, ‘Distributed real-time model-based diag-

nosis’, in IEEE Aerospace Conference, (2003).
[6] L. Console, D. T. Dupré, and P. Torasso, ‘On the relationship between

abduction and deduction’, Journal of Logic and Computation, 1(5),
661–690, (1991).

[7] M. O. Cordier and A. Grastien, ‘Exploiting independence in a decen-
tralised and incremental approach of diagnosis’, in 17th International

Workshop on Principles of Diagnosis (DX), (2006).
[8] M. Daigle, X. Koutsoukos, and G. Biswas, ‘Distributed diagnosis of

coupled mobile robots’, in IEEE International Conference on Robotics

and Automation, pp. 3787–3794, (2006).
[9] R. Davis, ‘Diagnostic reasoning based on structure and behavior’, Arti-

ficial Intelligence, 24, 347–410, (1984).
[10] J. de Kleer and B. C. Williams, ‘Diagnosing multiple faults’, Artificial

Intelligence, 32(1), 97–130, (1987).
[11] A. Felfernig, G. Friedrich, D. Jannach, and M. Stumptner,

‘Consistency-based diagnosis of configuration knowledge bases’, Ar-
tificial Intelligence, 152(2), 213–234, (2004).

[12] G. Fleischanderl, H. Schreiner, T. Havelka, M. Stumptner, and
F. Wotawa, ‘An environment and language for industrial use of model-
based diagnosis’, in ECAI Workshop on Knowledge-Based Engineer-

ing, (2000).
[13] G. Friedrich, G. Gottlob, and W. Nejdl, ‘Physical impossibility instead

of fault models’, in 8th AAAI Conference on Artificial Intelligence, pp.
331–336, (1990). Also appears in Readings in Model-Based Diagnosis
(Morgan Kaufmann, 1992).

[14] R. Greiner, B. A. Smith, and R. W. Wilkerson, ‘A correction to the
algorithm in Reiter’s theory of diagnosis’, Artificial Intelligence, 41(1),
79–88, (1989).

[15] X. Le Guillou, M. O. Cordier, S. Robin, and L. Rozé, ‘Chronicles for
on-line diagnosis of distributed systems’, in 18th European Conference
on Artificial Intelligence (ECAI), pp. 194–198, (2008).

[16] Th. Havelka, M. Stumptner, and F. Wotawa, ‘AD2L- A Programming
Language for Model-Based Systems (Preliminary Report)’, in 11th In-

ternational Workshop on Principles of Diagnosis (DX), (2000).
[17] M. Kalech and G. A. Kaminka, ‘On the design of coordination diag-

nosis algorithms for teams of situated agents’, Artificial Intelligence,
171(8–9), 491–513, (2007).

[18] F. Koushanfar, M. Potkonjak, and A. Sangiovanni-Vincentelli, ‘On-line
fault detection of sensor measurements’, in IEEE Sensors, pp. 974–979,
(2003). ISBN 0-7803-8133-5.

[19] J. Kurien, X. Koutsoukos, and F. Zhao, ‘Distributed diagnosis of net-
worked hybrid systems’, in AAAI Spring Symposium on Information

Refinement and Revision for Decision Making: Modeling for Diagnos-

tics, Prognostics, and Prediction, pp. 37–44, (2002).
[20] G. Lamperti and M. Zanella, Diagnosis of Active Systems, 2003. ISBN

978-1-4020-7487-5.
[21] A. Malik, P. Struss, and M. Sachenbacher, ‘Qualitative modeling is the

key – a successful feasibility study in automated generation of diagnosis
guidelines and failuer mode and effects analysis for mechatronic car
subsystems’, in 6th International Workshop on Principles of Diagnosis
(DX), (1995).

[22] A. Malik, P. Struss, andM. Sachenbacher, ‘Case studies in model-based
diagnosis and fault analysis of car-subsystems’, in 12th European Con-
ference on Artificial Intelligence (ECAI), (1996).

[23] W. Mayer, M. Stumptner, D. Wieland, and F. Wotawa, ‘Can AI help to
improve debugging substantially? debugging experiences with value-
based models’, in 15th Eureopean Conference on Artificial Intelligence
(ECAI), pp. 417–421, (2002).

[24] W.Mayer, M. Stumptner, D.Wieland, and F.Wotawa, ‘Towards an inte-
grated debugging environment’, in 15th Eureopean Conference on Ar-

tificial Intelligence (ECAI), pp. 422–426, (2002).
[25] I. Mozetič, ‘Hierarchical model-based diagnosis’, International Jour-

nal of Man-Machine Studies, 35, 329–362, (1991).
[26] I. Pill, G. Steinbauer, and F. Wotawa, ‘A practical approach for the on-

line diagnosis of industrial transportation systems’, in 7th IFAC Sympo-

sium on Fault Detection, Supervision and Safety of Technical Processes,
pp. 1318–1323, (2009).

[27] G. M. Provan and J. Wang, ‘Automated benchmark model generators
for model-based diagnostic inference’, in 20th International Joint Con-
ference on Artificial Intelligence (IJCAI), pp. 513–518, (2007).

[28] K. Rajan, D. E. Bernard, G. Dorais, E. B. Gamble, B. Kanefsky,
J. Kurien, W. Millar, N. Muscettola, P. P. Nayak, N. F. Rouquette, B. D.
Smith, W. Taylor, and Y. Tung, ‘Remote agent: An autonomous con-
trol system for the new millennium’, in 14th European Conference on

Artificial Intelligence (ECAI), pp. 726–730, (2000).
[29] R. Reiter, ‘A theory of diagnosis from first principles’, Artificial Intel-

ligence, 32(1), 57–95, (1987).
[30] P. Ribot, Y. Pencolé, and M. Combacau, ‘Design requirements for the

diagnosability of distributed discrete event systems’, in 19th Interna-

tional Workshop on Principles of Diagnosis (DX), (2008).
[31] J. Schweiger, K. Ghandri, and A. Koller, ‘Concepts of a distributed real-

time knowledge base for teams of autonomous systems’, in Interna-

tional Conference on Intelligent Robots and Systems, pp. 1508–1515,
(1994).

[32] S. Stoehr, ‘Using a distributed knowledge base to coordinate au-
tonomous mobile systems’, in 7th International Workshop on Database
and Expert Systems Applications (DEXA), pp. 172–177, (1996).

[33] P. Struss and O. Dressler, ‘Physical negation— Integrating fault models
into the general diagnostic engine’, in 11th International Joint Confer-

ence on Artificial Intelligence (IJCAI), pp. 1318–1323, (1989).
[34] R. Su, W.M. Wonham, J. Kurien, and X. Koutsoukos, ‘Distributed di-

agnosis for qualitative systems’, in 6th International Workshop on Dis-
crete Event Systems (WODES), (2002).

[35] J. Wang and G. M. Provan, ‘Generating application-specific benchmark
models for complex systems’, in 23rd AAAI conference on Artificial

intelligence, pp. 566–571, (2008).
[36] B. C. Williams and P. P. Nayak, ‘Immobile robots – AI in the new mil-

lennium’, AI Magazine, 16–35, (1996).
[37] F. Wotawa and J. Weber, ‘Challenges of distributed model-based diag-

nosis’, in 23rd International Conference on Industrial, Engineering &

Other Applications of Applied Intelligent Systems (IEA/AIE), (2010).

32

Diagnosis discrimination for ontology debugging

Kostyantyn Shchekotykhin and Gerhard Friedrich 1

Abstract. Debugging is an important prerequisite for the wide-

spread application of ontologies, especially in areas that rely upon

everyday users to create and maintain knowledge bases, such as the

Semantic Web. Most recent approaches use diagnosis methods to

identify sources of inconsistency. However, in most debugging cases

these methods return many alternative diagnoses, thus placing the

burden of fault localization on the user. This paper demonstrates

how the target diagnosis can be identified by performing a sequence

of observations, that is, by querying an oracle about entailments of

the target ontology. We exploit probabilities of typical user errors

to formulate information theoretic concepts for query selection. Our

evaluation showed that the suggested method reduces the number of

required observations compared to myopic strategies.

1 Introduction

The application of semantic systems, including the Semantic Web

technology, is largely based on the assumption that the development

of ontologies can be accomplished efficiently even by every day

users. For such users and also for experienced knowledge-engineers

the identification and correction of erroneous ontological definitions

can be an extremely hard task. Ontology debugging tools simplify the

development of ontologies by localizing a set of axioms that should

be modified in order to formulate the intended target ontology.

To debug an ontology a user must specify some requirements such

as coherence and/or consistency. Additionally, one can provide test

cases [3] which must be fulfilled by the target ontology Ot. A num-

ber of diagnosis methods have been developed [11, 6, 3] to pinpoint

alternative sets of possibly faulty axioms (called a set of diagnoses).

A user has to change at least all of the axioms of one diagnosis in

order to satisfy all of the requirements and test cases.

However, the diagnosis methods can return many alternative diag-

noses for a given set of test cases and requirements. In such cases it

is unclear how to identify the target diagnosis. A possible solution

would be to introduce an ordering based on some preference criteria.

For instance, Kalyanpur et al. [7] suggest measures to rank the ax-

ioms of a diagnosis depending on their structure, occurrence in test

cases, etc. Only the top ranking diagnoses are then presented to the

user. Of course this set of diagnoses will contain the target one only

in the case where a faulty ontology, the given requirements and test

cases provide enough information for appropriate heuristics. How-

ever, in most debugging sessions a user has to provide additional

information (e.g. in the form of tests) to identify the target diagnosis.

In this paper we present an approach to acquire additional infor-

mation by generating a sequence of queries that are answered by

some oracle such a user, an information extraction system, etc. Each

answer to a query reduces the set of diagnoses until finally the tar-

get diagnosis is identified. In order to construct queries we exploit

the property that different diagnoses imply unequal sets of axioms.

Consequently, we can differentiate between diagnoses by asking the

1 University Klagenfurt, Austria, email: firstname.lastname@uni-klu.ac.at

oracle if the target ontology should imply an axiom or not. These ax-

ioms can be generated by classification and realization services pro-

vided in description logic reasoning systems [12, 4]. In particular, the

classification process computes a subsumption hierarchy (sometimes

also called “inheritance hierarchy” of parents and children) for each

concept name mentioned in a TBox. For each individual mentioned

in an ABox, realization computes the atomic concepts (or concept

names) of which the individual is an instance [12].

In order to generate the most informative query we exploit the fact

that some diagnoses are more likely than others because of typical

user errors. The probabilities of these errors can be used to estimate

the change in entropy of the set of diagnoses if a particular query is

answered. We select those queries which minimize the expected en-

tropy, i.e. maximize the information gain. An oracle should answer

these queries until a diagnosis is identified whose probability is sig-

nificantly higher than those of all other diagnoses. This diagnosis is

the most likely to be the target one.

We compare our entropy-based method with a greedy approach

that selects those queries which try to cut the number of diagnoses

in half. The evaluation shows that on average the suggested entropy-

based approach is at least 50% better than the greedy one.

The remainder of the paper is organized as follows: Section 2

presents two introductory examples as well as the basic concepts.

The details of the entropy-based query selection method are given in

Section 3. Section 4 describes the implementation of the approach

and is followed by evaluation results in Section 5. The paper con-

cludes with an overview of related work.

2 Motivating examples and basic concepts

In order to explain the fundamentals of our approach let us introduce

two examples.

Example 1 Consider a simple ontology O with the terminology T :

ax1 : A ⊑ B ax2 : B ⊑ C ax3 : C ⊑ Q ax4 : Q ⊑ R

and the background theory A : {A(w),¬R(w)}. Let the user ex-

plicitly define that the two assertional axioms should be considered

as correct.

The ontology O is inconsistent and the only irreducible set of

axioms (minimal conflict set) that preserves the inconsistency is

CS : {〈ax1, ax2, ax3, ax4〉}. That is one has to modify or remove

at least one of the following axioms {{ax1}, {ax2}, {ax3}, {ax4}}
to restore the consistency of the ontology. However it is unclear,

which ontology from a set of consistent ontologies (diagnoses) D :
{D1 . . .D4}, whereDi = O\{ax i}, corresponds to the target one.

D1 : [ax1] D2 : [ax2] D3 : [ax3] D4 : [ax4]

In order to focus on the essentials of our approach we employ

the following simplified definition of diagnosis without limiting its

generality. A more detailed version can be found in [3].

We allow the user to define of a background theory (represented

as a set of axioms) which is considered to be correct, a set of logical

33

sentences which must be implied by the target ontology and a set of

logical sentences which must not be implied by the target ontology.

∆ is a set of axioms which are assumed to be faulty.

Definition 1: Given a diagnosis problem
〈

O, B, T |=, T 6|=

〉

where

O is an ontology, B a background theory, T |= a set of logical sen-

tences which must be implied by the target ontology Ot, and T 6|= a

set of logical sentences which must not be implied by Ot.

A diagnosis is a partition of O in two disjoint sets D and ∆ (D =
O \ ∆) s.t. D can be extended by a logical description EX and

D ∪ B ∪ EX |= t|= for all t|= ∈ T |= and D ∪ B ∪ EX 6|= t 6|= for

all t 6|= ∈ T 6|=.

A diagnosis (D,∆) is minimal if there is no proper subset of the

faulty axioms ∆′ ⊂ ∆ such that (D′,∆′) is a diagnosis. The fol-

lowing proposition allows us to characterize diagnoses without the

extension EX . The idea is to use the sentences which must be im-

plied to approximate EX .

Corollary 1: Given a diagnosis problem
〈

O, B, T |=, T 6|=

〉

, a par-

tition of O in two disjoint sets D and ∆ is a diagnosis iff D ∪ B ∪
{
∧

t|=∈T |= t|=} ∪ ¬t 6|= consistent for all t 6|= ∈ T 6|=.

In the following we assume that a diagnosis always exists under

the (reasonable) condition that the background theory together with

the axioms in T |= and the negation of axioms in T 6|= are mutually

consistent. For the computation of diagnoses the set of conflicts is

usually employed.

Definition 2: Given a diagnosis problem
〈

O, B, T |=, T 6|=

〉

, a con-

flict CS is a subset of O s.t. there is a t 6|= ∈ T 6|= and CS ∪ B ∪
{
∧

t|=∈T |= t|=} ∪ ¬t 6|= is inconsistent.

A conflict is the part of the ontology that preserves the inconsis-

tency. Note, incoherence is just a special case of inconsistency en-

forced by background axioms or recognized by built-in reasoning

services. A minimal conflict CS has no proper subset which is a

conflict. (D,∆) is a (minimal) diagnosis iff ∆ is a (minimal) hitting

set of all (minimal) conflict sets [10]. In the following we represent

a diagnosis by the set of axioms D assumed to be correct.

In order to differentiate between the minimal diagnoses

{D1 . . .D4} an oracle can be queried for information about the en-

tailments of the target ontology. For instance, in our example the

diagnoses have the following entailments provided by the realiza-

tion of the ontology: D1 : ∅, D2 : {B(w)}, D3 : {B(w), C(w)},

and D4 : {B(w), C(w), Q(w)}. Based on these entailments we can

ask the oracle whether the target ontology has to entail Q(w) or not

(Ot 6|= Q(w)). If the answer is yes (which we model with the boolean

value 1), then Q(w) is added to T |= and D4 is the target diagno-

sis. All other diagnoses are rejected because Di ∪ B ∪ {Q(w)} for

i = 1, 2, 3 is inconsistent. If the answer is no (which we model with

the boolean value 0), then Q(w) is added to T 6|= and D4 is rejected

as D4 ∪B |= Q(w) (rsp. D4 ∪B ∪ ¬Q(w) is inconsistent) and we

have to ask the oracle another question.

Property 1: Given a diagnosis problem
〈

O, B, T |=, T 6|=

〉

, a set of

diagnoses D, and a set of logical sentences X representing the query

Ot |= X ? :

If the oracle gives the answer 1 then every diagnosis Di ∈ D is a

diagnosis for T |= ∪X iffDi ∪B ∪{
∧

t|=∈T |= t|=}∪ {X}∪¬t 6|= is

consistent for all t 6|= ∈ T 6|=.

If the oracle gives the answer 0 then every diagnosis Di ∈ D is

a diagnosis for T 6|= ∪ {X} iff Di ∪ B ∪ {
∧

t|=∈T |= t|=} ∪ ¬X is

consistent.

Note, a set X corresponds to a logical sentence where all elements

of X are connected by ∧. This defines the semantics of ¬X .

As possible queries we consider sets of entailed concept defini-

tions provided by a classification service and sets of individual asser-

Table 1. Possible queries in Example 1

Query D
X

D
¬X

D
∅

X1 : {B(w)} {D2,D3,D4} {D1} ∅
X2 : {C(w)} {D3,D4} {D1,D2} ∅
X3 : {Q(w)} {D4} {D1,D2,D3} ∅

tions provided by realization. In fact, the intention of classification

is that a model for a specific application domain can be verified by

exploiting the subsumption hierarchy [1].

One can use different methods to select the best query in order to

minimize the number of questions asked to the oracle. For instance,

a simple “split-in-half” heuristic prefers queries which remove half

of the diagnoses from the set D. To apply this heuristic it is essential

to compute the set of diagnoses that can be rejected depending on

the query outcome. For a query X the set of diagnoses D can be

partitioned in sets of diagnoses DX, D¬X and D
∅ where

• for each Di ∈ D
X it holds that Di ∪B ∪ {

∧

t|=∈T |= t|=} |= X

• for eachDi ∈ D
¬X it holds thatDi∪B∪{

∧

t|=∈T |= t|=} |= ¬X

• D
∅ = D \ (DX ∪D

¬X)

Given a diagnosis problem we say that the diagnoses in D
X pre-

dict 1 as a result of the query X , diagnoses in D
¬X predict 0, and

diagnoses in D
∅ do not make any predictions.

Property 2: Given a diagnosis problem
〈

O, B, T |=, T 6|=

〉

, a set of

diagnoses D, and a query X:

If the oracle gives the answer 1 then the set of rejected diagnoses

is D¬X and the set of remaining diagnoses is DX ∪D
∅.

If the oracle gives the answer 0 then the set of rejected diagnoses

is DX and the set of remaining diagnoses is D¬X ∪D
∅.

For our first example let us consider three possible queries X1,

X2 and X3. For each query we can partition a set of diagnoses D

into three sets DX, D¬X and D
∅ (see Table1). Using this data and

the heuristic given above we can determine that asking the oracle if

Ot |= C(w) ? is the best query, as two diagnoses from the set D are

removed regardless of the answer.

Let us assume that D1 is the target diagnosis, then an oracle will

answer 0 to our question (i.e. Ot 6|= C(w)). Given this feedback we

can decide that Ot |= B(w) ? is the next best query, which is also

answered with 0 by the oracle. Consequently, we identified that D1

is the only remaining minimal diagnosis. More generally, if n is the

number of diagnoses and we can split the set of diagnoses in half

by each query then the minimum number of queries is log2n. How-

ever, if the probabilities of diagnoses are known we can reduce this

number of queries by using two effects: (1) We can exploit diagnoses

probabilities to asses the probabilities of answers and the change in

information content after an answer is given. (2) Even if there are

multiple diagnoses in the set of remaining diagnoses we can stop

further query generation if one diagnosis is highly probable and all

other remaining diagnoses are highly improbable.

Example 2 Consider an ontology O with the terminology T :

ax1 : A1 ⊑ A2 ⊓M1 ⊓M2 ax4 : M2 ⊑ ∀s.A ⊓ C

ax2 : A2 ⊑ ¬∃s.M3 ⊓ ∃s.M2 ax5 : M3 ≡ B ⊔ C

ax3 : M1 ⊑ ¬A ⊓B

and the background theory A : {A1(w), A1(u), s(u,w)}. The

ontology is inconsistent and includes two minimal conflicts:

{〈ax1, ax3, ax4〉 , 〈ax1, ax2, ax3, ax5〉}. To restore consistency,

the user should modify all axioms of at least one minimal diagno-

sis:

D1 : [ax1] D2 : [ax3] D3 : [ax4, ax5] D4 : [ax4, ax2]

Following the same approach as in the first example, we com-

pute entailments for each minimal diagnosis Di ∈ D. To con-

struct a query we select a D
X ⊂ D and determine the set X

34

Table 2. Possible queries in Example 2

Query D
X

D
¬X

D
∅

X1 : {B ⊑ M3} {D1,D2,D4} {D3} ∅
X2 : {B(w)} {D3,D4} {D2} {D1}
X3 : {M1 ⊑ B} {D1,D3,D4} {D2} ∅
X4 : {M1(w),M2(u)} {D2,D3,D4} {D1} ∅
X5 : {A(w)} {D2} {D3,D4} {D1}
X6 : {M2 ⊑ D} {D1,D2} ∅ {D3,D4}
X7 : {M3(u)} {D4} ∅ {D1,D2,D3}

{D4} {D1} {D1} {D2}

{D1,D4} : X4 {D1,D2} : X3

{D1,D2,D4} : X2 {D3}

{D1,D2,D3,D4} : X1

1yyrr
rr

0 %%
LL

LL

1yyrr
rr

0 %%
LL

LL

1ttiiiiiii 0

%%
LL

LL

0 %%
LL

LL1

yyrr
rr

Figure 1. Greedy algorithm

of common entailed concept instantiations and concept subsump-

tion axioms for all Di ∈ D
X. If the set X is empty, the query

is rejected. For instance, diagnoses D2, D3 and D4 have the fol-

lowing set of common entailments X ′

4 : {A1 ⊑ A2, A1 ⊑
M1, A1 ⊑ M2, A2(u),M1(u),M2(u), A2(w),M1(w)}. However,

a query need not include all of these axioms. Note, a query X

partitions the set of diagnoses into D
X, D¬X and D

∅. It is suf-

ficient to query an irreducible subset of X which preserves the

partition. In our example, the set X ′

4 can be reduced to its sub-

set X4 : {M1(w),M2(u)}. If there are multiple subsets that pre-

serve the partition we select one with minimal cardinality. For query

generation we investigate all possible subsets of D. This is feasible

since we consider only the n most probable minimal diagnoses (e.g.

n = 12) during query generation and selection.

The possible queries presented in Table 2 partition the set of di-

agnoses D in a way that makes the application of myopic strategies,

such as split-in-half, inefficient. A greedy algorithm based on such

a heuristic would select the first query X1 as the next query, since

there is no query that cuts the set of diagnoses in half. If D4 is the

target diagnosis then X1 will be positively evaluated by an oracle

(see Figure 1). On the next iteration the algorithm would also choose

a suboptimal query since there is no partition that divides the diag-

nosesD1,D2, andD4 into two equal groups. Consequently, it selects

the first untried query X2. The oracle answers positively, and the al-

gorithm identifies query X4 to differentiate between D1 and D4.

However, in real-world settings the assumption that all axioms fail

with the same probability is rarely the case. For example, Rector

at al. [9] report that in most cases inconsistent ontologies were cre-

ated because users (a) mix up ∀r.S and ∃r.S, (b) mix up ¬∃r.S and

∃r.¬S, (c) mix up ⊔ and ⊓, (d) wrongly assume that classes are dis-

joint by default, (e) wrongly apply negation. Using this information

one might find that axioms ax2 and ax4 are significantly more likely

to be faulty than ax3 (because of the use of quantifiers), whereas ax3

is significantly more likely to be faulty than ax5 and ax1 (because

of the use of negation). Therefore, diagnosisD2 is the most probable

one, followed closely by D4 although it is a double fault diagnosis.

D1 andD3 are significantly less probable because ax1 and ax5 have

a significantly lower fault probability than ax3. A detailed justifica-

tion based on probability is given in the next section.

Taking into account the information about user faults given above,

it is almost useless to ask query X1 because it is highly probable

that the target diagnosis is either D2 or D4 and therefore it is highly

probable that the oracle will respond with 1. Instead, asking X3 is

more informative because given any possible answer we can exclude

one of the highly probable diagnoses, i.e. either D2 or D4. If the

oracle responds to X3 with 0 then D2 is the only remaining diagno-

sis. However, if the oracle responds with 1, diagnoses D4, D3, and

D1 remain, whereD4 is significantly more probable compared to di-

agnoses D3 and D1. We can stop, since the difference between the

probabilities of the diagnoses is high enough such thatD1 can be ac-

cepted as the target diagnosis. In other situations additional questions

may be required. This strategy can lead to a substantial reduction in

the number of queries compared to myopic approaches as we will

show in our evaluation.

3 Entropy-based query selection

To select the best query we make the assumption that knowledge is

available about the a-priori failure probabilities in specifying axioms.

Such probabilities can be estimated either by studies like Rector et

al. [9] or can be personalized by observing the typical failures of spe-

cific users working with an ontology development tool. Using obser-

vations about typical failures we can calculate the initial probability

of each axiom p(ax i) containing a failure using the probability addi-

tion rule for non-mutually exclusive events. If no information about

failures is available then the debugger can initialize all probabilities

p(ax i) with some small number.

Given the failure probabilities p(ax i) of axioms, the diagnosis al-

gorithm first calculates the a-priori probability p(Dj) that Dj is the

target diagnosis. Since all axioms fail independently, this probability

can be computed as [2]:

p(Dj) =
∏

axn 6∈Dj

p(axn)
∏

axm ∈Dj

1− p(axm) (1)

The prior probabilities for diagnoses are then used to initialize an

iterative algorithm that includes two main steps: (a) selection of the

best query and (b) update of the diagnoses probabilities given the

query feedback.

According to information theory the best query is the one that,

given the answer of an oracle, minimizes the expected entropy of a

the set of diagnoses [2]. Let p(Xi = vik) where vi0 = 0 and vi1 = 1
be the probability that query Xi is answered with either 0 or 1. Let

p(Dj |Xi = vik) be the probability of diagnosis Dj after the oracle

answers Xi = vik. The expected entropy after querying Xi is:

He(Xi) =

1
∑

k=0

p(Xi = vik)×

−
∑

Dj∈D

p(Dj |Xi = vik) log2 p(Dj |Xi = vik)

The query which minimizes the expected entropy is the best one

based on a one-step-look-ahead information theoretic measure. This

formula can be simplified to the following score function [2] which

we use to evaluate all available queries and select the one with the

minimum score to maximize information gain:

sc(Xi) =

1
∑

k=0

p(Xi = vik) log2 p(Xi = vik) + p(D∅

i) + 1 (2)

where D
∅

i
is the set of diagnoses which do not make any predic-

tions for Xi. Since, for a query Xi the set of diagnoses D can be

partitioned into the sets DXi , D¬Xi and D
∅

i
, the probability that an

oracle will answer a query Xi with either 1 or 0 can be computed as:

p(Xi = vik) = p(Sik) + p(D∅

i)/2 (3)

where Sik corresponds to the set of diagnoses that predicts the out-

come of a query, e.g. Si0 = D
¬Xi for Xi = 0 and Si1 = D

Xi in the

other case. p(D∅

i
) is the total probability of the diagnoses that predict

35

no value for the query Xi. Under the assumption that both outcomes

are equally likely the probability that a set of diagnoses D∅

i
predicts

Xi = vik is p(D∅

i
)/2.

Since all diagnoses are statistically independent the probabilities

of their sets can be calculated as:

p(D∅

i) =
∑

Dj∈D
∅
i

p(Dj) p(Sik) =
∑

Dj∈Sik

p(Dj)

Given the feedback v of an oracle to the selected query Xs, i.e.

Xs = v we have to update the probabilities of the diagnoses to take

the new information into account. The update is made using Bayes’

rule for each Dj ∈ D:

p(Dj |Xs = v) =
p(Xs = v|Dj)p(Dj)

p(Xs = v)
(4)

where the denominator p(Xs = v) is known from the query selection

step (Equation 3) and p(Dj) is either a prior probability (Equation 1)

or is a probability calculated using Equation 4 during the previous

iteration of the debugging algorithm. We assign p(Xs = v|Dj) as

follows:

p(Xs = v|Dj) =











1, if Dj predicted Xs = v;

0, if Dj is rejected by Xs = v;
1

2
, if Dj ∈ D

∅

s

Example 1 (continued) Suppose that the debugger is not provided

with any information about possible failures and therefore it assumes

that all axioms fail with the same probability p(ax i) = 0.01. Us-

ing Equation 1 we can calculate probabilities for each diagnosis.

For instance, D1 suggests that only one axiom ax1 should be mod-

ified by the user. Hence, the probability of diagnosis D1, p(D1) =
p(ax1)(1− p(ax2))(1− p(ax3))(1− p(ax4)) = 0.0097. All other

minimal diagnoses have the same probability, since every other min-

imal diagnosis suggests the modification of one axiom. To simplify

the discussion we only consider minimal diagnoses for the query se-

lection. Therefore, the prior probabilities of the diagnoses can be nor-

malized to p(Dj) = p(Dj)/
∑

Dj∈D
p(Dj) and are equal to 0.25.

Given the prior probabilities of the diagnoses and a set of queries

(see Table 1) we evaluate the score function (Equation 2) for each

query. E.g. for the first query X1 : {B(w)} the probability p(D∅) =
0 and the probabilities of both the positive and negative outcomes

are: p(X1 = 1) = p(D2) + p(D3) + p(D4) = 0.75 and p(X1 =
0) = p(D1) = 0.25. Therefore the query score is sc(X1) = 0.1887.

The scores computed during the initial stage (see Table 3) suggest

that X2 is the best query. Taking into account thatD1 is the target di-

agnosis the oracle answers 0 to the query. The additional information

obtained from the answer is then used to update the probabilities of

diagnoses using the Equation 4. Since D1 and D2 predicted this an-

swer, their probabilities are updated, p(D1) = p(D2) = 1/p(X2 =
1) = 0.5. The probabilities of diagnoses D3 and D4 which are re-

jected by the outcome are also updated, p(D3) = p(D4) = 0.

Table 3. Expected scores for queries (p(ax i) = 0.01)

Query Initial (X2 = 1)

X1 : {B(w)} 0.1887 0
X2 : {C(w)} 0 1
X3 : {Q(w)} 0.1887 1

On the next iteration the algorithm recomputes the scores using the

updated probabilities. The results show that X1 is the best query. The

other two queries X2 and X3 are irrelevant since no information will

be gained if they are performed. Given the negative feedback of an

Table 4. Expected scores for queries (p(ax1) = 0.025,
p(ax2) = p(ax3) = p(ax4) = 0.01)

Query Initial score
X1 : {B(w)} 0.250
X2 : {C(w)} 0.408
X3 : {Q(w)} 0.629

oracle to X1, we update the probabilities p(D1) = 1 and p(D2) = 0.

In this case the target diagnosis D1 was identified using the same

number of steps as the split-in-half heuristic.

However, if the first axiom is more likely to fail, e.g. p(ax1) =
0.025, then the first query will be X1 : {B(w)} (see Table 4). The

recalculation of the probabilities given the negative outcome X1 = 0
sets p(D1) = 1 and p(D2) = p(D3) = p(D4) = 0. Therefore the

debugger identifies the target diagnosis only in one step.

Example 2 (continued) Suppose that in ax4 the user specified ∀s.A
instead of ∃s.A and ¬∃s.M3 instead of ∃s.¬M3 in ax2. Therefore

D4 is the target diagnosis. Moreover, the debugger is provided with

observations of three types of failures: (1) conjunction/disjunction

occurs with probability p1 = 0.001, (2) negation p2 = 0.01, and

(3) restrictions p3 = 0.05. Using the probability addition rule for

non-mutually exclusive events we can calculate the probability of the

axioms containing an error: p(ax1) = 0.0019, p(ax2) = 0.1074,

p(ax3) = 0.012, p(ax4) = 0.051, and p(ax5) = 0.001. These

probabilities are exploited to calculate the prior probabilities of the

diagnoses (see Table 5) and to initialize the query selection process.

On the first iteration the algorithm determines that X3 is the best

query and asks an oracle whether Ot |= M1 ⊑ B is true or not

(see Table 6). The obtained information is then used to recalculate

the probabilities of the diagnoses and to compute the next best query

X4, and so on. The query process stops after the third query, since

D4 is the only diagnosis that has the probability p(D4) > 0.

Given the feedback of the oracle X4 = 1 for the second query,

the updated probabilities of the diagnoses show that the target diag-

nosis has a probability of p(D4) = 0.9918 whereas p(D3) is only

0.0082. In order to reduce the number of queries a user can spec-

ify a threshold, e.g. σ = 0.95. If the probability of some diagnosis

is greater than this threshold, the query process stops and returns

the most probable diagnosis. Note, that even after the first answer

X3 = 1 the most probable diagnosis D3 is three times more likely

than the second most probable diagnosis D1. Given such a great dif-

ference we could suggest to stop the query process after the first an-

swer. Thus, in this example the debugger requires less queries than

the split-in-half heuristic.

Table 5. Probabilities of diagnoses after answers

Answers D1 D2 D3 D4

Prior 0.0970 0.5874 0.0026 0.3130
X3 = 1 0.2352 0 0.0063 0.7585
X3 = 1, X4 = 1 0 0 0.0082 0.9918
X3 = 1, X4 = 1, X1 = 1 0 0 0 1

Table 6. Expected scores for queries

Queries Initial X3 = 1 X3 = 1, X4 = 1

X1 : {B ⊑ M3} 0.974 0.945 0.931
X2 : {B(w)} 0.151 0.713 1
X3 : {M1 ⊑ B} 0.022 1 1
X4 : {M1(w),M2(u)} 0.540 0.213 1
X5 : {A(w)} 0.151 0.713 1
X6 : {M2 ⊑ D} 0.686 0.805 1
X7 : {M3(u)} 0.759 0.710 0.970

4 Implementation details

The ontology debugger (Algorithm 1) takes an ontology O as input.

Optionally, a user can provide a set of axioms B that are known to be

36

correct, a set FP of fault probabilities for axioms ax i ∈ O, a max-

imum number n of most probable minimal diagnoses that should be

considered by the algorithm, and a diagnosis acceptance threshold σ.

The fault probabilities of axioms are computed as described by ex-

ploiting knowledge about typical user errors. Parameters n and σ are

used to speed up the computations. In Algorithm 1 we approximate

the set of the n most probable diagnoses with the set of the n most

probable minimal diagnoses, i.e. we neglect non-minimal diagnoses

which are more probable than some minimal ones. This approxima-

tion is correct, under a reasonable assumption that probability of each

axiom p(ax i) < 0.5. In this case for every non-minimal diagnosis

ND, a minimal diagnosisD ⊂ ND exists which from Equation 1 is

more probable than ND. Consequently the query selection algorithm

operates on the set of minimal diagnoses instead of all diagnoses (in-

cluding non-minimal ones). However, the algorithm can be adapted

with moderate effort to also consider non-minimal diagnoses.

We implemented the computation of diagnoses following the ap-

proach proposed by Friedrich et al. [3]. The authors employ the com-

bination of two algorithms, QUICKXPLAIN [5] and HS-TREE [10].

The latter is a search algorithm that takes an ontologyO, a set of cor-

rect axioms, a set of axioms T 6|= which must not be implied by the

target ontology, and the maximal number of most probable minimal

diagnoses n as an input. HS-TREE implements a breadth-first search

strategy to compute a set of minimal hitting sets from the set of all

minimal conflicts inO. As suggested in [3] it ignores all branches of

the search tree that correspond to hitting sets inconsistent with at least

one element of T 6|=. HS-TREE terminates if either it identifies the n

most probable minimal diagnoses or there are no further diagnoses

which are more probable than the already computed ones. Note, HS-

TREE often calculates only a small number of minimal conflict sets

in order to generate the n most probable minimal hitting sets (i.e.

minimal diagnoses), since only a subset of all minimal diagnoses is

required.

The search algorithm computes minimal conflicts using QUICKX-

PLAIN. This algorithm, given a set of axioms AX and a set of correct

axioms B returns a minimal conflict set CS ⊆ AX , or ∅ if axioms

AX ∪B are consistent. Minimal conflicts are computed on-demand

by HS-TREE while exploring the search space.

The set of minimal hitting sets returned by HS-TREE is used by

GETDIAGNOSES to create at most n minimal diagnoses D. The func-

tion generates diagnoses Di ∈ D by removing all elements of the

corresponding minimal hitting set from O.

The COMPUTEDATASET function uses the set of diagnoses to gen-

Algorithm 1: Ontology debugging algorithm

Input: ontology O, set of background axioms B, set of fault

probabilities for axioms FP , maximum number of most

probable minimal diagnoses n, acceptance threshold σ

Output: a diagnosis D
1 DP ← ∅; DS ← ∅; T |= ← ∅; T 6|= ← ∅; D← ∅;
2 while true do

3 D← getDiagnoses(HS-Tree(O, B ∪ T |=, T 6|=, n));
4 DS ← computeDataSet(DS,D);
5 DP ← computePriors(D, FP);

6 DP ← uptateProbablities(DP,DS, T |=, T 6|=);
7 s← getMinimalScore(DS,DP);
8 if aboveThreshold(DP, σ) ∨ s = 1 then

9 return mostProbableDiagnosis(D, DP);

10

〈

X,DX,D¬X
〉

← selectQuery(DS, s);

11 if getAnswer(Ot |= X) then T |= ← T |= ∪X;

12 else T 6|= ← T 6|= ∪ ¬X;

erate data sets like the ones presented in Tables 1 and 2. For each

diagnosis Di ∈ D the algorithm gets a set of entailments from the

reasoner and computes the set of queries. For each query Xi it par-

titions the set D into D
Xi , D¬Xi and D

∅

i
, as defined in Section 2.

Then Xi is iteratively reduced by applying QUICKXPLAIN such that

sets DXi and D
¬Xi are preserved.

In the next step COMPUTEPRIORS computes prior probabilities

for a set of diagnoses given the fault probabilities of the axioms

contained in FP . To take past answers into account the algorithm

updates the prior probabilities of the diagnoses by evaluating Equa-

tion 4 for each diagnosis in D (UPDATEPROBABILITIES). All data

required for the update is stored in sets DS, T |=, and T 6|=.

The function GETMINIMALSCORE evaluates the scoring function

(Equation 2) for each element of DS and returns the minimal score.

The algorithm stops if there is a diagnosis probability above the

acceptance threshold σ or if no query can be used to differentiate

between the remaining diagnoses (i.e. all scores are 1). The most

probable diagnosis is then returned to the user. If it is impossible

to differentiate between a number of highly probable minimal diag-

noses, the algorithm returns a set that includes all of them.

In the query-selection phase the algorithm selects a set of axioms

that should be evaluated by an oracle. SELECTQUERY retrieves a

triple
〈

X,DX,D¬X
〉

∈ DS that corresponds to the best (minimal)

score s. The set of axioms X is then presented to the oracle. If there

are multiple queries with a minimal score SELECTQUERY returns the

triple where X has the smallest cardinality in order to reduce the an-

swering effort.

Depending on the answer of the oracle, the algorithm extends ei-

ther set T |= or T 6|=. This is done to exclude corresponding diagnoses

from the results of HS-TREE in further iterations. Note, the algo-

rithm can be easily extended to allow the oracle to reject a query if

the answer is unknown. In this case the algorithm proceeds with the

next best query until no further queries are available.

5 Evaluation

The evaluation of our approach was performed using generated ex-

amples. We employed generated examples because (1) for published

sets of inconsistent/incoherent ontologies, such as those described

in [6], the target ontologies are not known and (2) we wanted to per-

form controlled experiments where the number of minimal diagnoses

and their cardinality could be varied to make the identification of the

target diagnosis more difficult.

Therefore we created a generator which takes a consistent and co-

herent ontology, a set of fault patterns together with their probabil-

ities, the required number of minimal diagnoses, and the required

minimum cardinality of these minimal diagnoses as inputs. The out-

put was an alteration of the input ontology for which the required

number of minimal diagnoses with the required cardinality exist. In

order to introduce inconsistencies and incoherences, the generator

applied fault patterns randomly to the input ontology depending on

their probabilities.

In our experiments we took five fault patterns from a case study re-

ported by Rector at al. [9] and assigned fault probabilities according

to their observations of typical user errors. Thus we assumed that in

cases (a) and (b) (see Section 2, when an axiom includes some roles

(i.e. property assertions), axiom descriptions are faulty with a proba-

bility of 0.025, in cases (c) and (d) 0.01 and in case (e) 0.001. In each

iteration the generator randomly selected an axiom to be altered and

applied a fault pattern to this axiom. Next it selected another axiom

using the concept taxonomy and altered it correspondingly to intro-

duce an incoherency/inconsistency. The fault patterns were randomly

selected in each step using the probabilities given above.

For instance, given the description of a randomly selected concept

37

1

2

3

4

5

6

7

8

4 6 8 10 12

Random Split!in!half | |=2 ! |"# ! |"$

Number of minimal diagnoses in a faulty ontology

R
e
q
u
ir
e
d

 q
u
e
ri
e
s

Figure 2. Number of queries required to select the target diagnosis Dt with
threshold σ = 0.95. Random and “split-in-half” are shown for |Dt| = 2.

A and the fault pattern “misuse of negation”, we added the construct

⊓¬X to the description of A, where X is a new concept name. Next,

we randomly selected concepts B and S such that S ⊑ A and S ⊑ B

and added ⊓X to the description of B.

During the generation process, we applied the HS-TREE algo-

rithm after each introduction of a incoherency/inconsistency to con-

trol two parameters: the number of minimal diagnoses in the ontol-

ogy and their minimum cardinality. The generator continued to in-

troduce incoherences/inconsistencies until the specified parameters

were reached. The resulting faulty ontology as well as the fault pat-

terns and their probabilities were inputs for the ontology debugger.

The acceptance threshold σ was set to 0.95 and the number of most

probable minimal diagnoses n was set to 12. One of the minimal di-

agnoses with the required cardinality was randomly selected as the

target diagnosis. Note, the target ontology is not equal to the origi-

nal ontology, but rather is a corrected version of the altered one, in

which the faulty axioms were repaired by replacing them with their

original (correct) versions according to the target diagnosis. The tests

were done on ontologies bike2 to bike9, bcs3, galen and galen2 from

Racer’s benchmark suite2.

The average results of the evaluation performed on each test suite

(depicted in Figure 2) show that the entropy-based approach out-

performs the split-in-half method described in Section 2 as well as

random query selection by more than 50% for the |Dt| = 2 case

due to its ability to estimate the probabilities of diagnoses. On aver-

age the algorithm required 8 seconds to generate a query. Figure 2

also shows that the cardinality of the target diagnosis increases as the

number of required queries increases. This holds for the random and

split-in-half methods (not depicted) as well. However, the entropy-

based approach is still better than the split-in-half method even for

diagnoses with increasing cardinality. The approach required more

queries to discriminate between high cardinality diagnoses because

the prior probabilities of these diagnoses tend to converge.

6 Related work

To the best of our knowledge, no entropy-based methods for query

generation and selection have been proposed to debug faulty on-

tologies so far. Diagnosis methods for ontologies are introduced

in [11, 6, 3]. Ranking of diagnoses and proposing a target diagno-

sis is presented in [7]. This method uses a number of measures such

as: (a) the frequency with which an axiom appears in conflict sets, (b)

impact on an ontology in terms of its “lost” entailments when some

axiom is modified or removed, (c) ranking of test cases, (d) prove-

nance information about the axiom, and (e) syntactic relevance. All

these measures are evaluated for each axiom in a conflict set. The

2 http://www.racer-systems.com/products/download/benchmark.phtml

scores are then combined in a rank value which is associated with

the corresponding axiom. These ranks are then used by a modified

HS-TREE algorithm that identifies diagnoses with a minimal rank.

In this work no query generation and selection strategy is proposed

if the target diagnosis cannot be determined reliably with the given a-

priori knowledge. In our work additional information is acquired un-

til the target diagnosis can be identified with confidence. In general,

the work of [7] can be combined with the one presented in this paper

as axiom ranks can be taken into account together with other obser-

vations while calculating the prior probabilities of the diagnoses.

The idea of selecting the next best query based on the expected

entropy was exploited in the generation of decisions trees [8] and

further refined for selecting measurements in the model-based diag-

nosis of circuits [2]. We extended these methods to query selection

in the domain of ontology debugging.

7 Conclusions

In this paper we presented an approach to the sequential diagnosis

of ontologies. We showed that the axioms generated by classifica-

tion and realization can be used to build queries which differentiate

between diagnoses. To rank the utility of these queries we employ

knowledge about typical user errors in ontology axioms. Based on

the likelihood of an ontology axiom containing an error we predict

the information gain produced by a query result, enabling us to select

the next best query according to a one-step-lookahead entropy-based

scoring function. We outlined the implementation of a sequential de-

bugging algorithm and compared our proposed method with a split-

in-half strategy. Our experiments showed a significant reduction in

the number of queries required to identify the target diagnosis.

REFERENCES

[1] The Description Logic Handbook, eds., F. Baader, D. Calvanese,
D.L. McGuinness, D. Nardi, and P.F. Patel-Schneider, Cambridge Uni-
versity Press, New York, NY, USA, 2nd edn., 2007.

[2] J. de Kleer and B.C. Williams, ‘Diagnosing multiple faults’, Artificial
Intelligence, 32(1), 97–130, (April 1987).

[3] G. Friedrich and K. Shchekotykhin, ‘A General Diagnosis Method for
Ontologies’, in Proceedings of the 4th International Semantic Web Con-
ference, pp. 232–246. Springer, (2005).

[4] V. Haarslev and R. Müller, ‘RACER System Description’, in Proceed-
ings of the 1st International Joint Conference on Automated Reasoning,
pp. 701–705, Springer, (2001).

[5] U. Junker, ‘QUICKXPLAIN: Preferred Explanations and Relaxations
for Over-Constrained Problems.’, in Association for the Advancement
of Artificial Intelligence, pp. 167–172, AAAI, (2004).

[6] A. Kalyanpur, B. Parsia, M. Horridge, and E. Sirin, ‘Finding all Justi-
fications of OWL DL Entailments’, in Proceedings of the 6th Interna-
tional Semantic Web Conference, pp. 267–280, Springer, (2007).

[7] A. Kalyanpur, B. Parsia, E. Sirin, and B. Cuenca-Grau, ‘Repairing Un-
satisfiable Concepts in OWL Ontologies’, in Proceedings of the 3rd
European Semantic Web Conference, pp. 170–184, Springer, (2006).

[8] J.R. Quinlan, ‘Induction of Decision Trees’, Machine Learning, 1(1),
81–106, (March 1986).

[9] A. Rector, N. Drummond, M. Horridge, J. Rogers, H. Knublauch,
R. Stevens, H. Wang, and C. Wroe, ‘OWL Pizzas: Practical Experience
of Teaching OWL-DL: Common Errors & Common Patterns’, in Pro-
ceedings of 14th International Conference on Knowledge Engineering
and Knowledge Management, pp. 63–81, Springer, (2004).

[10] R. Reiter, ‘A Theory of Diagnosis from First Principles’, Artificial In-
telligence, 23, 57–95, (1987).

[11] S. Schlobach, Z. Huang, R. Cornet, and F. Harmelen, ‘Debugging In-
coherent Terminologies’, Journal of Automated Reasoning, 39(3), 317–
349, (2007).

[12] E. Sirin, B. Parsia, B. Cuenca-Grau, A. Kalyanpur, and Y. Katz, ‘Pellet:
A practical OWL-DL reasoner’, Web Semantics: Science, Services and
Agents on the World Wide Web, 5(2), 51–53, (2007).

38

On the Way to High-Level Control for Resource-Limited
Embedded Systems with Golog

Alexander Ferrein1 and Gerald Steinbauer2

Abstract.

In order to allow an autonomous robot to perform non-trivial tasks

like to explore a foreign planet the robot has to have deliberative

capabilities like reasoning or planning. Logic-based approaches like

the programming and planing language Golog and it successors has

been successfully used for such decision-making problems. A draw-

back of this particular programing language is that their interpreter

usually are written in Prolog and run on a Prolog back-end. Such

back-ends are usually not available or feasible on resource-limited

robot systems. In this paper we present our ideas and first results of a

re-implementation of the interpreter based on the Lua scripting lan-

guage which is available on a wide range of systems including small

embedded systems.

1 Introduction

In order to allow an autonomous robot to perform non-trivial tasks

like to explore a foreign planet the robot has to have deliberative ca-

pabilities like reasoning or planning. There are a number of architec-

tures in the literature like the Saphira architecture [14] or Structured

Reactive Controllers [1] which enhance a robot with such advanced

decision making capabilities. Other approaches, which have been in-

vestigated over the last decade, are logic-based approaches. They

have been successfully applied to the control of various robot sys-

tems. One representative of this sort of decision-making approaches

is the programming and planing language Golog [16]. The language

is based on the Situation Calculus which allows for reasoning about

actions and change. Moreover, its syntax and semantics provides an

elegant way to specify the behavior of a system. During the years

several dialects of Golog have been developed to integrate more fea-

tures like dealing with uncertain knowledge, concurrency and sens-

ing [19]. The different Golog derivatives have in common that they

are logic-based and their implementation is, so far, usually done in

the logic programming language Prolog. The used Prolog back-ends

like SWI or Eclipse usually have the drawback of high demands on

memory and computational power. This fact and the fact that prob-

ably no Prolog system might be available at all on the target plat-

form, prevents the application of Golog on resource-limited embed-

ded systems. With resource-limited embedded systems we mean sys-

tems which have strongly limited resources in terms of memory and

computational power. On such systems classical decision making is

not able to provide decisions in time, fails to come up with decisions

or the methods used are not implementable at all.

1 Robotics and Agent Research Lab, University of Cape Town, Cape Town,
South Africa

2 Institute for Software Technology, Graz University of Technology, Graz,
Austria

The goals of our current ongoing research is to apply such pow-

erful decision-making approaches also to resource-limited systems.

In particular we have two target robot systems in mind which we use

for our research on autonomous robots. On one hand we use the hu-

manoid robot Nao from Aldebaran Robotics. We use the robot for our

participation in the competitions of the RoboCup Standard League

[7]. Nao is a 21 degrees-of-freedom humanoid robot of the size of

about 58 cm. It is equipped with two cameras and a AMD Geode

500 MHz CPU with 256 MB of Memory. The robot is running under

embedded Linux where no Prolog interpreter is available nor feasi-

ble. The other platform is the Lego Mindstorm NXT system, which

we also use for educational robotics on high-school and undergrad-

uate level. The system is also very popular for robot competitions

like RoboCupJunior or undergraduate classes in programming. The

system has predefined interfaces to various sensors and actuator. The

central processing block uses an ARM processor with 64 kB of RAM

and 256 kB of flash-memory running at 48 MHz. There are a number

of commercial and open source OS for the system. But none of them

are coming with a logic back-end. The NXT robot system has also

been successfully used to practically teach AI methods from stan-

dard textbooks [20, 21]. But the AI methods did not run native on the

robot. The related code was executed on an external computer and

commands were send to the robot via blue-tooth interface.

In order to make Golog available on such platforms, we started

to develop a first prototype implementation of a Golog interpreter in

the scripting language Lua [5]. Lua [12] is a fast interpreted script-

ing language with a small memory footprint that moreover can be

executed on resource-limited systems like the Nao robot. In the pre-

vious work we ran several standard Golog examples on our Lua in-

terpreter as a proof of concept. In this paper, we discuss our plans to

deploy IndiGolog on the Lego Mindstorm NXT platform. IndiGolog

is an extension of Golog and allows on-line interpretation sensing

and concurrent actions which was not the case in vanilla Golog. A

previous attempt to control a Lego robot with IndiGolog was done by

Levesque and Pagnucco in [15]. The developed system allowed users

to specify the behavior with IndiGolog, the resulting actions were

transmitted to the robot via an infra-red link. Recently, the action

logic C+ was deployed on a Mindstorm robot in a similar way [3].

In order to be able to use Golog-type languages to control au-

tonomous robots and to directly execute it on the resource-limited

system without an external Prolog back-end, we propose to port our

previous idea to the two target systems. In the following sections we

will explain our idea about the porting the language and the back-

ground in more details. In Section 2, we introduce Golog and our

previous work on an Golog interpreter in Lua, before we show im-

plementation details and further ideas to deploy the new interpreter

on the NXT platform in Section 3. We conclude with Section 4.

39

(a) Humanoid robot Nao used in RoboCup Stan-
dard Platform League

(b) Lego Mindstorm NXT used for educational
robotics.

Figure 1. Two of our target platforms.

2 Previous Work on Golog and Lua

In [5], we presented an implementation of the so-called vanilla

Golog, this time the chosen implementation language was not Prolog,

but Lua. Although only a proof of concept, it showed an alternative

implementation for Golog. Especially the implementation language

Lua, which was chosen in [5], is interesting, as it is available for a

much larger number of systems, including embedded architectures

like the Mindstorm NXT. In this section, we briefly go over the ba-

sics of the situation calculus and Golog, give a short introduction to

Lua, and sketch our previous Lua implementation of Golog.

2.1 Golog

Golog is based on Reiter’s variant of the Situation Calculus [17, 19],

a second-order language for reasoning about actions and their effects.

Changes in the world are only caused by actions so that a situation is

completely described by the history of actions starting in some ini-

tial situation. Properties of the world are described by fluents, which

are situation-dependent predicates and functions. For each fluent the

user defines a successor state axiom specifying precisely which value

the fluent takes on after performing an action. These, together with

precondition axioms for each action, axioms for the initial situation,

foundational and unique names axioms, form a so-called basic ac-

tion theory [19]. Golog emerged to an expressive language over the

recent years. It has imperative control constructs such as loops, con-

ditionals [16], and recursive procedures, but also less standard con-

structs like the non-deterministic choice of actions. Extensions exist

for dealing with continuous change [9] and concurrency [4], allowing

for exogenous and sensing actions [8] and probabilistic projections

into the future [9], or decision-theoretic planning [2] which employs

Markov Decision Processes (MDPs). Successful robotics application

of Golog and its extensions can be found, for instance, in [6, 15, 18].

2.2 Lua

Lua [12] is a scripting language designed to be fast, lightweight, and

embeddable into other applications.The whole binary package takes

less then 200 KB of storage. When loaded, it takes only a very small

amount of RAM. In an independent comparison Lua has turned out to

be one of the fastest interpreted programming languages [13, 22]. Be-

sides that Lua is an elegant, easy-to-learn language [11] that should

allow newcomers to start developing behaviors quickly. Another ad-

vantage of Lua is that it can interact easily with C/C++. As most

basic robot software is written in C/C++, there exists an easy way to

make Lua available for a particular control software.

Lua is a dynamically typed language, attaching types to variable

values. Eight different types are distinguished: nil, boolean, number,

string, table, function, userdata, and thread. For each variable value,

its type can be queried. The central data structure in Lua are tables.

Table entries can be addressed by either indices, thus implementing

ordinary arrays, or by string names, implementing associative arrays.

Table entries can refer to other tables allowing for implementing re-

cursive data types. For example t["name"] = value1 stores the

key-value pair (name, value1) in table t, while t[9] = value2

stores the value2 at position 9 in array t. Special iterators allow ac-

cess to associative tables and arrays. Note that both index methods

can be used for the same table.

Function are first-class types in Lua and can be created at run-

time, assigned to a variable, or passed as an argument, or be de-

stroyed. Lua provides proper tail calls and closures to decrease the

needed stack size for function calls. Furthermore, Lua offers a spe-

cial method to modify code at run-time. With the loadstring()

statement chunks of code (one or more instruction of Lua code is

called chunk) can be executed at run-time. This comes in handy to

modify code while you are running it.

2.3 The Prototype golog.lua

In [5], we presented a first prototypical implementation of a vanilla

Golog interpreter in Lua. The motivation was there as it is here, to

make Golog available for a larger number of platforms, as Lua in turn

is available for a larger number of embedded systems. We will briefly

show, how situations and programs are represented in golog.lua.

In Lua, everything is a table, as tables are the central and only data

structure. Hence, situation terms, actions, fluents, and programs are

also represented as nested tables. The following example code shows

a Golog program encoded as a Lua table.

prog = {{"a_1", {}}, {"a_2", {"x_1", "x_2"}},
{"if", {cond}, {"a_3", {}}, {"a_4", {}}}}

local s_2, failure = Do(prog, {})

The program above consists of an 0-ary action a1 in sequence with

a2(x1, x2) and a conditional which, depending on the truth value of

cond , chooses a3 or a4, resp. The program is executed with calling

40

the interpreter function Do3 which takes a program and a situation

term, and returns the resulting situation after executing the program,

or, if the program trace leads to a failure, i.e. the failure variable is

true, s2 contains the last possible action. Assuming that cond holds,

the resulting execution trace of the prog will be

s_2 = {{"a_1",{}},

{"a_2", {"x_1", "x_2"},{"a_3,{}}}}4

We use the empty table or nil to represent S0. The above situation

term is to be interpreted as do(a3,do(a2(x1,x2), do(a1, S0))). Sim-

ilarly, we represent logical formulas as tables, with the connectives

in prefix notation, i.e. {and, φ, {or, ψ, θ}} represents the formula

φ ∧ (ψ ∨ θ). We refer to [5] for a more concise introduction of the

implementation of Golog in Lua.

3 The next step: indigolog.lua on the NXT

In this section, we show the next step after a vanilla Golog interpreter

in Lua. We present the corner stones on the way to deploy IndiGolog

on the embedded platform Mindstorm NXT. First, we introduce the

library pbLua, which allows for running Lua on the NXT and pro-

vides a number of Lua functions to access the robot’s sensors and

actuators. Then, we outline the IndiGolog, the online Golog dialect

which we have chosen for this project, and briefly discuss the dif-

ferences to the fore-mentioned vanilla Golog. Finally, we show the

implementation of the main loop of our new IndiGolog interpreter in

Lua and introduce a target robotics domain for our approach.

3.1 pbLua

pbLua is a library from the Hempel Design Group [10] which pro-

vides a LUA interpreter for the NXT. Moreover, pbLua offers a com-

plete API to access sensors and actuators on the NXT via Lua func-

tions. The following examples are taken from [10].

The first example shows how to access the motor which is plugged

into port 1 of the NXT:

-- Turn Motor 1 exactly 180 degrees at half speed
port = 1
nxt.OutputSetRegulation(port,SINGLE_MOTOR,USE_BREAK)
nxt.OutputSetSpeed(port,NO_RAMP,50,180)

The first statement sets the control option for the motor connected

to port 1 (standard control for a single motor using the break of the

motor). Then motor 1 is commanded to turn for 180◦ with 50% of the

maximum speed not using a ramp for the acceleration/deceleration.

The second example shows Lua code that returns the values read

from the light sensor until the orange button on the NXT is pressed.

-- Read light sensor until the orange button is pressed
function LightRead(port,active)

active = active or 0
if 0 == active then nxt.InputSetType(port,LS_WI,SV)

5 else nxt.InputSetType(port,LS_WOI,SV)
end
repeat

print(nxt.TimerRead(), nxt.InputGetStatus(port))
until(ORANGE_BUTTON == nxt.ButtonRead())

10 end

3 Note that IndiGolog, which we introduce in the next section, does not make
use of Do, but uses a transition semantics which is defined with functions
trans and final.

4 Note that all program statements, actions, and fluent names must be given as
strings. For reasons of readability, we omit the quotation marks throughout
this paper. Note also that Lua supports to return multiple value, the situation
term and the failure condition in this case.

First the mode of the sensor on port 1 is configured. The differ-

ent flags are: LS_WI (light sensor using own illumination), LS_WOI

(light sensor using ambient illumination) and SV (provide scaled val-

ues in the range of 0 to 100%). Then read and display the value of

the sensor until the orange button is pressed.

The pbLua API offers a complete interface to the sensors and ac-

tuators of the NXT and is therefore well-suited for our task.

3.2 IndiGolog

The major drawbacks of vanilla Golog [16] is that it does not al-

low for sensing and can be only interpreted in an offline fashion.

These facts obviously limit the value of Golog for the control of au-

tonomous robots which are deployed in a dynamic and uncertain

world. In order to overcome this limitations several successors to

Golog have been developed. One of them is IndiGolog (incremental

deterministic Golog) [8] which allows among others for online inter-

pretation, sensing actions and concurrent actions. We decide to use

this Golog dialect for our embedded reasoning system as it provides

all features necessary for intelligent robust robot control.

IndiGolog also makes use of a situation calculus basic action the-

ory. The way how IndiGolog interprets programs, is however differ-

ent. IndiGolog uses a transition semantics. That means that the input

program is interpreted in a step-by-step fashion. The interpreter di-

rectly commits to actions, i.e. once a primitive action is interpreted

and it is possible to execute it, it will be executed in the real world.

This is the main difference to the so-called evaluation semantics of

vanilla Golog, where the program is first evaluated until the end. In

IndiGolog, the program is transformed from one configuration 〈σ, s〉
to a legal successor configuration 〈δ, s′〉 by means of a predicate

Trans(σ, s, δ, s′). Termination conditions of the program are de-

fined with a predicate Final(σ, s), which states when the program

σ may legally terminate. The semantics of the program statements

are hence defined by predicates Trans and Final. To give an ex-

ample, we show the example of the Trans and Final predicates of a

primitive action and a loop.

Trans(α, s, δ, s′) ≡ Poss(a[s], s) ∧ δ = nil ∧ s′ = do(a, s)

Final(α, s) ≡ false

Trans(while ϕ do δ1 end, s, δ, s
′) ≡

ϕ[s] ∧ ∃δ′.δ = (δ′;while ϕ do δ1 end) ∧ Trans(δ, s, δ′, s′)

Final(while ϕ do σ end, s) ≡ ϕ[s] ∧ Final(σ, s)

If the primitive action is possible, i.e. its precondition axiom

Poss(a[s], s) holds, the action is executed. The successor situation

is the one where the action was executed, i.e. s′ = do(a, s), and the

successor configuration is δ = nil. The final configuration is obvi-

ously not reached, as the program is transformed to the nil-program,

which in turn defines the final configuration. The loop works as fol-

lows. If the condition holds, the successor configuration consists the

loop body in sequence with the while loop itself to ensure that an-

other iteration of the loop can be executed in the next transition step.

The loop reaches a legal final configuration, when the condition holds

and the loop body terminates.

The second advantage of IndiGolog over vanilla Golog is that is

has a direct account to sensing. The basic action theory is extended

with so-called sensing actions and exogenous actions. These are ac-

tions that directly connect a robot’s sensor with a fluent. Each time,

the sensing action is executed, the program gets an update of the re-

41

spective sensing result. Similarly, exogenous actions are very useful

to model interaction between the robot and its environment.

3.3 Some Implementation Details

In the following, we give some implementation details of our In-

diGolog implementation in Lua. Basically, we present the interpreter

main loop, which shows the respective calls to functions trans()

and final(), which in turn interpret the input program p (which

we omit here). In line 8 of the function indigo() it is checked,

whether a transition in the program p is possible in the situation s.

The function trans:check(p, s) extracts the first program in-

struction of p and returns the transformed program (as defined in the

previous section) in the member variable trans.delta (cf. line

21). If trans:check() returns false, it is checked if a final

configuration was reached (line 13), otherwise, the program execu-

tion was unsuccessful (line 17).

function indigo(p, s)
trans.s = s
local tv -- did final/trans evaluate to true?
repeat

5 -- did an exogenous action occur?
if exog_occurs then exog_action() end

-- is a transition possible?
tv = trans:check(p, s)

10

-- check for termination condition otherwise
if not tv then

if final:check(p, s) then

print("Program terminates successfully\n")
15 return

else --
print("Program terminates unsuccessfully\n")
return

end
20 end

p = trans.delta -- remainder program
s = trans.s -- new situation term

until false
end

Similar as in [5], the basic action theory has to be speci-

fied. Each action is stored as an object with its own metat-

able, i.e. act = action:new(name, arg1, ...). Then,

one has to specify the precondition axiom in form of a

function act.Poss(s,arg1, ...). Similarly, a function

act.Execute(arg1, ...) is required. This defines the inter-

face to the real world and can be used to execute, say, drive ac-

tions on the real robot hardware. For each fluent occurring in ba-

sic action theory, one has to specify an effect axiom of the form

fluent.action(s, arg1, ...) together with a function

fluent.initially(arg1, ...) which defines the initial

value of the respective fluent. When a fluent formula is evaluated, flu-

ent regression is applied by subsequently calling the particular effect

axioms. Assume we have a fluent f . Moreover, we have two prim-

itive actions a1 and a2 which are executed in sequence starting in

S0 leading to a new situation S. In our lua-based implementation the

value of the fluent f in situation S is evaluates by the recursive func-

tion call f.a2({a1}, f.a1({}, f.initially({}))).

Note that we assume a closed world here. More details about this

can be found in [5].

3.4 The Target Domain

We plan to use the Lua-based implementation of IndiGolog to solve

the following delivery robot domain which is an extension of the

original example used in [15]. The robot has to deliver goods be-

tween offices. The example domain is shown in Figure 2.

OfficeA OfficeB

OfficeD

OfficeG

OfficeF OfficeE

OfficeC

Figure 2. Example domain for the delivery robot.

The domain comprises several offices connected by a corridor. In

order to ease the navigation for the Lego Mindstorm NXT based

robot in reality there is a black line on the floor connecting the rooms.

The robot can simply follow this line. The line may branch on some

junctions. In order to allow the robot to detect if it has reached a

room or junction there are silver spots on the floor. Please note that

branches at junctions are always orthogonal and marked with their

direction, e.g., N for the northbound branch. Junctions are always lo-

cated in front of an office door. Connection lines between rooms and

junctions itself need not to be straight. The robot uses four standard

Lego Mindstorm NXT sensors: (1) a light sensor for following the

black line, (2) a light sensor to detect the silver spots, (3) a touch

sensor to detect an obstacle and (4) a touch sensor to detect if a pack-

age is currently loaded.

OfficeA OfficeB

Junction7 Junction3

Junction6 Junction5 Junction4

Junction2Junction1

OfficeDOfficeEOfficeF

OfficeG
OfficeC

W E

N

Figure 3. Topological map of the example domain.

The robot uses a graph-based topological map to find its way be-

tween the office. The corresponding graph for the example domain

is depicted in Figure 3. The robot receives delivery orders to bring

goods from one office to another office. In order to be able to fulfill

its task the robot needs some planning capabilities in order to decide

which order to process next and to plan its path from the origin to the

destination. Moreover, paths between junctions and office may be

blocked by one or more obstacles. If a path is blocked is initially not

known to the robot. Therefore, the robot has to deal with incomplete

knowledge and it needs also sensing and re-planning capabilities.

IndiGolog is obviously suitable to control the robot for this task.

In order to solve the task with we have to specify fluents, actions, the

influence of sensing and domain-dependent facts.

42

For instance we need the following fluents among others:

• at(loc): this fluent is true if the robot is at the corresponding junc-

tion or room loc

• direction(dir): the robot faces towards a particular direction dir

at a junction

• loaded(package): the robot carries package

• blocked(node1, dir1, node2, dir2): the path between the nodes

node1 and node2 via the directions dir1 and dir2 is blocked

Moreover, we need domain-dependent facts:

• connect(node1, dir1, node2, dir2): the nodes node1 and node2
are connected via the directions dir1 and dir2

• order(origin, destination, package): there exists a delivery or-

der for package from origin to destination

In order to serve the the different delivery orders we define the

following control procedure:

control = procedure:new(’control’, {})
control.body = { {’while’, {’some’, {o, d, p},

{’order’, {o, d, p}},
{serve_order’, {o, d, p}}}}}

The procedure control continues to chose non-deterministically

an order and process it until no open orders exist anymore. We use

existentially quantified statement some. This leads us to the proce-

dure serve order:

serve_order = procedure:new(serve_order’, {o, d, p})
serve_order.body = { {’goto’, {o}}, {’pickup’, {p}},
{’goto’, {d}}, {’deliver’, {p}}}

serve order execute sequentially the actions go to origin o, picks

up the package p, go to destination d and finally deliver the package

p. Where the procedure goto(g) implements the navigation towards

the goal g.

goto = procedure:new(’goto’, g)
goto.body = { {’while’, { {’not’, {’at’, g}}},

{’?’, {’some’, {d}, {’next_dir’, d}}},
{’turn’, {d}}, {’drive’}}}

As long as the final goal g is not reached, expressed by the for-

mula ¬at(g) as condition, the procedure chooses the next suitable

direction on the junction, turns toward the corresponding branch and

moves along the branch until it reaches the next node. Please note the

predicate next dir(d) is true for the next suitable direction towards

the goal.

This leads us to the basic primitive actions. For instance the prim-

itive action turn(d) ensures that the robot faces towards the direc-

tion d, d ∈ {N,E, S,W}. The primitive actions actually control

the robot’s hardware via the corresponding pbLua commands. Please

note that for simplicity the directions are represented internally by

the set of integers {0, 1, 2, 3}.

turn = action:new(’turn’, 1) -- turn action has arity 1

function turn.Poss(s,dir)
5 return true
end

function turn.Execute(s,dir)
local act_dir = GetFluent(’direction’)

10 local dir_diff = dir - act_dir
if dir_diff < 0 then dir_diff = 4 + dir_diff end

for i=dir_diff, i>0 do
repeat

nxt.OutputSetSpeed(MOTOR_A,NO_RAMP,50)
15 nxt.OutputSetSpeed(MOTOR_B,NO_RAMP,-50

until (nxt.InputGetStatus(SENSOR_1) < BLACK_LIMIT)
nxt.OutputSetSpeed(MOTOR_A,NO_RAMP,0)
nxt.OutputSetSpeed(MOTOR_B,NO_RAMP,0)

end
20 end

The primitive action turn can be executed all time and has there-

fore a precondition which is always true.

The executable part of the action first calculate how many orthog-

onal turn it has to perform to reach the desired direction. Once it

knows the number of turns it simple repeats to turn on the spot until

the line sensor detects the next orthogonal branch. This fact is de-

tected if the returned value of the light sensor falls below the thresh-

old BLACK_LIMIT.

The other remaining primitive action are defined in a similar way.

4 Conclusion and Future Work

In this paper, we showed some ongoing work to make the robot pro-

gramming and plan language Golog and its derivatives available for

a larger number of robot platforms. Usually, Golog interpreter are

implemented in Prolog, which is straight-forward regarding the fact

that the specification of Golog is given in first order logic. However,

Prolog might not be available for all robot platforms. Therefore in

[5], a first prototypical Lua implementation of a vanilla Golog inter-

preter was presented. As vanilla Golog is only of limited usability

for real robots, we here show the next steps to apply Golog-type lan-

guages to real robots. We started to re-implemented IndiGolog in Lua

with the goal to deploy it on the platform Lego Mindstorm NXT. In-

diGolog features a online execution semantics and is able to integrate

sensor actions and exogenous events, which is particularly useful for

real robot applications. As this is ongoing research, we are only able

to show the preliminary implementation of IndiGolog on a Linux-

based Lua interpreter here. Currently, we working towards the actual

deployment of the interpreter under pbLua on the Lego Mindstorm

NXT.

Due to the very limited memory on the NXT, one challenge is to

fit the interpreter, the domain description and the IndiGolog program

onto the NXT. One possible way to do this could be to set up a cross-

compile chain for the ARM CPU and just deploy the Lua byte-code

on the NXT. This is due to further investigation, but by the time of the

workshop we are convinced to have first results available. The future

work also includes the full integration of sensing, the investigation

of the correctness of the implementation as well as giving run-time

results of the performance of the interpreter, both on the Mindstorm

NXT as well as on the humanoid robot Nao.

In particular the Nao application is interesting. In previous work

the Golog dialect ReadyLog [6] was used to control soccer robots of

the RoboCup Middle Size League. The complexity of the RoboCup

Standard Platform League is comparable to that domain which was

modeled using about 100 fluents, 40 primitive actions and additional

15000 line of code for interfacing the robot hardware. How to fit such

a control model into a limited system such as the Nao will be a real

challenge.

REFERENCES

[1] Michael Beetz, ‘Structured Reactive Controllers’, Autonomous Agents

and Multi-Agent Systems, 4(2), 25–55, (2001).
[2] Craig Boutilier, Ray Reiter, Mikhail Soutchanski, and Sebastian Thrun,

‘Decision-theoretic, high-level agent programming in the situation cal-
culus’, in Proceedings of the Seventeenth National Conference on Ar-

tificial Intelligence (AAAI-00) and Twelfth Conference on Innovative

Applications of Artificial Intelligence (IAAI-00), pp. 355–362. AAAI
Press, (2000).

[3] Ozan Caldiran, Kadir Haspalamutgil, Abdullah Ok, Can Palaz, Esra Er-
dem, and Volkan Patoglu, ‘Bridging the gap between high-level reason-
ing and low-level control’, in Logic Programming and Nonmonotonic

Reasoning, volume 5753 of Lecture Notes in Computer Science, pp.
342–354. Springer, (2009).

43

[4] G. De Giacomo, Y. Lsperance, and H. Levesque, ‘ConGolog, A con-
current programming language based on situation calculus’, Artificial

Intelligence, 121(1–2), 109–169, (2000).
[5] Alexander Ferrein, ‘lua.golog: Towards a non-prolog implementation

of golog for embedded systems’, in Cognitive Robotics, eds., Ger-
hard Lakemeyer, Hector Levesque, and Fiora Pirri, number 100081 in
Dagstuhl Seminar Proceedings. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, Germany, (2010). to appear.

[6] Alexander Ferrein and Gerhard Lakemeyer, ‘Logic-based robot con-
trol in highly dynamic domains’, Robotics and Autonomous Systems,

Special Issue on Semantic Knowledge in Robotics, 56(11), 980–991,
(2008).

[7] Alexander Ferrein, Gerald Steinbauer, Graeme McPhillips, and Anet
Potgieter, ‘RoboCup Standard Platform League - Team Zadeat - An In-
tercontinental Research Effort’, in International RoboCup Symposium,
Suzhou, China, (2008).

[8] Giuseppe De Giacomo, Yves Lesprance, Hector J. Levesque, and Se-
bastian Sardina, Multi-Agent Programming: Languages, Tools and Ap-

plications, chapter IndiGolog: A High-Level Programming Language
for Embedded Reasoning Agents, 31–72, Springer, 2009.

[9] Henrik Grosskreutz and Gerhard Lakemeyer, ‘ccgolog – A logical lan-
guage dealing with continuous change.’, Logic Journal of the IGPL,
11(2), 179–221, (2003).

[10] Ralph Hempel. pblua – scripting fot the LEGO NXT.
http://www.hempeldesigngroup.com/lego/pblua/, 2010. (last vis-
ited on May 21, 2010).

[11] Ashwin Hirschi, ‘Traveling Light, the Lua Way’, IEEE Software, 24(5),
31–38, (2007).

[12] Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Walde-
mar Celes Filho, ‘Lua - An Extensible Extension Language’, Software:

Practice and Experience, 26(6), 635 – 652, (Jan 1999).
[13] Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Walde-

mar Celes Filho, ‘The Evolution of Lua’, in Proceedings of History

of Programming Languages III, pp. 2–1 – 2–26. ACM, (2007).
[14] Kurt Konolige, Karen Myers, Enrique Ruspini, and Alessandro Saf-

fiotti, ‘The saphira architecture: A design for autonomy’, Journal of Ex-

perimental and Theoretical Artificial Intelligence, 9, 215–235, (1997).
[15] Hector J. Levesque and Maurice Pagnucco, ‘Legolog: Inexpensive ex-

periments in cognitive robotics’, in Proceedings of the Second Interna-

tional Cognitive Robotics Workshop, Berlin, Germany, (2000).
[16] Hector J. Levesque, Raymond Reiter, Yves Lesprance, Fangzhen Lin,

and Richard B. Scherl, ‘GOLOG: A logic programming language for
dynamic domains’, The Journal of Logic Programming, 31(1-3), 59 –
83, (1997). Reasoning about Action and Change.

[17] J. McCarthy, ‘Situations, Actions and Causal Laws’, Technical report,
Stanford University, (1963).

[18] H. Pham, Applying DTGolog to Large-scale Domains, Master’s thesis,
Department of Electrical and Computer Engineering, Ryerson Univer-
sity, Toronot, Canada, 2006.

[19] Raymond Reiter, Knowledge in Action. Logical Foundations for Speci-

fying and Implementing Dynamical Systems, MIT Press, 2001.
[20] Stuart Russell and Pater Norvig, Artificial Intelligence: A Modern Ap-

proach (Second Edition), Prentice Hall, 2003.
[21] Paul Talaga and Jae C. Oh, ‘Combining AIMA and LEGO mindstorms

in an artificial intelligence course to build realworldrobots’, Journal of

Computing Science in Colleges, 24(3), 56–64, (2009).
[22] The Debian Project. The Computer Language Benchmarks Game.

http://shootout.alioth.debian.org/. retrieved Jan 30th 2009.

44

A domain language for expressing engineering rules

and a remarkable sub-language

Guy A. Narboni 1

Abstract.1We describe and analyse a constraint language for
expressing logic rules on variables having a finite integer range.
Our rules can involve linear arithmetic operations and comparisons
to capture common engineering knowledge. They are capable of
bidirectional inferences, using standard constraint reasoning
techniques. Further, we show that for a restricted sub-language the
basic propagation mechanism is complete. For systems in that
class, local consistency implies global consistency.

This noteworthy property can be instrumental in assessing the
scalability of an Expert System, which in practice is a cause for
concern with the growth of data. When the knowledge base passes
a syntactic check, we can guarantee that its solution is search-free
and therefore backtrack-free. By way of an illustration, we examine
the worst case complexity of a dynamic product configuration
example.

1 INTRODUCTORY EXAMPLE

Rules are a natural means for stating general principles, legal or

technical. For instance in Europe, any installation distributing

electrical power must comply with the IEC standards. A mandatory

safety requirement stipulates that: in a humid environment, the

degree of protection provided by enclosures must be rated IPX1.

Formally, we have a logical implication:

env = humid code = IPX1

In that statement, the environment characteristic can only take two

values (dry or humid), whereas the IP code has a wider but still

finite set of choices (including the IP3X, IP4X and IPX1 values).

The above rule therefore pertains to propositional calculus.

With respect to Boolean satisfiability, an equivalent formulation,

using binary variables only, is given by the clausal system:

h c1
c3 ! c4 ! c1

where h is true when the environment is humid and where c1 (resp.,

c3, c4) is true when the degree of protection is IPX1 (resp., IP3X,

IP4X). The additional disjunction ensures that the equipment has

indeed an IP code (i.e., c3, c4 and c1 cannot be simultaneously

false)2.

It appears that, although the clause h c1 is both Krom and

Horn (it has exactly 2 literals, and no more than one is positive), the

resulting system is neither Krom nor Horn. Now, those are the two

best known classes of rules for which the Boolean satisfiability

problem can be solved in reasonable time. So, should we fear the

worst case behaviour (i.e., a combinatorial explosion) when having

to reason with larger rule sets translating conditions of such a

simple kind? Until proven otherwise, presumably.

In this paper, we show that for some specific systems (including

the above example), such guarantees can be given.

To start with, we define a small constraint language for

expressing logic rules on variables having a finite integer range. We

observe that forward and backward inferences can be performed

rule-wise, by narrowing the variables’ domains. Then, assuming

that consistency is checked locally, at the rule level, using the

general propagation mechanism for constraint solving, we prove

that, in a special case, we get global consistency for free. Rules in

that remarkable case are easily recognizable from their syntactic

structure.

 Coming from tractability theory, this result generalizes the Horn

propositional case. Despite the relative narrowness of the class of

rules identified, we give a full-fledged example to which it is

applicable. We thus conclude that it should be of practical interest

for the handling of vast knowledge bases, in areas such as dynamic

product configuration where scalability is a major concern.

2 LOGIC RULES

We shall resort to first order logic for expressing the rules.

Rules are clearly easier to read and write using attribute - value

pairs, since variables are directly associated to real world domain

values. Modeling tools for engineers such as the Component

Description Language for Xerox machines [1] or the EXPRESS

product data specification language [2] often follow that

convention.

We’ll further assume that:

• the problem’s dimension n is known

(we have a finite number of attributes)

• all attribute domains are finite and —for convenience—

integer valued

(the latter is not a true restriction since one can always use a

one-to-one mapping for encoding values).

1. Implexe, France, email: r-d@implexe.fr

2. If need be, 3 extra clauses will forbid multiple selections:

c3 " c4 false
c3 " c1 false
c4 " c1 false

45

2.1 Language definition

In our language, constants are integers. Variables correspond to

attribute names. The functional expressions allowed are linear

expressions with integer coefficients. The domain of interpretation

is the set of integers with the usual arithmetic operations and the

comparison relations =, # and $.

A fact or atomic formula is a diophantine equation or inequality,

i.e., a constraint of the form :

linexp comparator constant

where linexp denotes a linear expression in (at most) n variables.

An atomic formula can be used to state a fact or a basic restraint.

Often, there will be just one variable with a coefficient of 1, the

other variables having zero coefficients, as in code $ 1.

A conjunctive formula is defined recursively: an atomic formula

is a conjunctive formula, and so is the conjunction of an atomic

formula with a conjunctive formula. For instance, the constraint

model Ax # b of an integer program (IP) is a conjunctive formula.

A rule or conditional formula is an implication constraint:

conjunctive formula atomic formula

It is a restricted form of rule with possibly several antecedents but

only one consequent. An example is a car configuration statement

excluding the air conditioning option when the battery and the

engine are of small size (e.g., 1 on a scale of 3), which writes:

battery = 1 " engine = 1 aircond = 0
(small) (small) (excluded)

Lastly, a knowledge base is a finite conjunction of, say m,

formulas which can be either rules or facts1. We can view it

formally as a quantifier-free Presburger arithmetic formula.

2.2 Global consistency checking

Proving the consistency of a knowledge base is a central issue in

automated deduction. This question applies to constraint programs

made of logic rules.

During an interactive session, new facts or restraints are

typically added to the rule base which grows incrementally.

Therefore, a truth maintenance system repeatedly needs to check

the satisfiability of a closed formula:

% x R1(x) " ..." Rm(x) " x & D1 ' ...' Dn (1)

where each n-ary constraint Ri in the conjunct states a fact or a rule,

and each unary range predicate xj & Dj in the cross-product sets a

domain constraint (i.e., an integer constraint plus a pair of linear

inequalities, basically).

An inference system will be complete if it is able to answer no to

the existential query as soon as the constraint system becomes

inconsistent.

The formula will be satisfiable if there is some instantiation of

the variables by constants from the domains which makes it true (an

instantiation makes each atomic constraint either true or false, and

consequently, the formula can be evaluated to be true or false).

Because there are finitely many possible assignments, the

satisfiability problem is decidable. However, the decision procedure

is equivalent in complexity to SAT solving. E.g., determining

whether there exists a valid configuration for a set of rules can be a

formidable challenge (the general problem being NP-complete) [3].

In practice, solution methods involve a search process —and don’t

scale well.

2.3 Finite domains solvers

General-purpose solvers routinely used in constraint programming

languages are by design incomplete. Their deductive power is a

trade-off between inference speed and strength. They check local

consistency conditions that are necessary but not sufficient for

ensuring global consistency.

Most of the time, the initial domain filtering step (propagation)

will have to be followed up by —and interlaced with— a

programmable enumeration phase (labeling), in order to answer the

question.

3 INFERENCES AS DOMAIN REDUCTIONS

3.1 Database semantics

A logic rule defines a relation. Interestingly, without resorting to

constraints, our introductory example rule could not be expressed

intensionally as a pure Prolog program, because of the Horn

limitation. To do so, we would need to extend logic programs with

disjunction [4] [5].

However, the semantics of the virtual relation R a logic rule defines

can be expressed by an extensional database:

{x | R(x) " x & D1 ' ...' Dn}

The set of points (or tuples) that satisfies the formula corresponds to

the disjunctive normal form.

Assume we use the following encodings in our example:

• 0 for dry, 1 for humid

• -1, 0 and 1 for IP3X, IP4X and IPX1, respectively.

Then, the intensional model is the logical implication:

env = 1 code = 1

together with the finite domain constraints at the source of the

disjunctions:

env & {0, 1} and code & {-1, 0, 1}

The extensional model is the relational table:

R(env, code) = {(0, -1), (0, 0), (0, 1), (1, 1)}

The compatibility constraint thus rules out 2 out of 6 possibilities.

Figure 1 depicts the relation R on a 2-dimensional lattice. We’ve

highlighted the convex hull of its solution points which shows a

least element, (0, -1) in the plane. We’ll go back later over this

special geometrical property.

Figure 1. 2D representation

3.2 Compiled vs. interpreted approaches

Once a relation is explicitly stored in an extensional table, the

search for solutions is linear in the size of that table. However, the

number of rows exponentially grows with the number of variables.

With decision diagrams, compiled versions may enjoy much more

compact forms (depending, of course, on the variable ordering).1. We’ll include the facts into the rule base by likening a fact to a rule
with no antecedent.

env

code

-1

1

0

46

But again, there is no guarantee that the process of generating the

table will terminate is reasonable time.

The main advantage of the compilation approach is that the bulk

of the work can be carried out off-line. The drawback is that the

rule base then becomes static. When one has to deal with

dynamicity, the alternative is a logic rule interpreter. This is the

choice implicitly made in the sequel, through the use of a contraint

solver for implementing the inference engine.

3.3 Constrained queries

The standard conditions that can be expressed in the where clause

of a database selection query closely resemble our conjunctive

formulas —at least, they share the same syntax.

3.3.1 Modus ponens
The SQL query:

select code from R where env = 1
gives a unique solution:

Answer(code) = {1}

code = 1 is also the result obtained when applying the rule in

forward chaining mode, in a cause and effect relationship. This

corresponds to the classical inference:

from env = 1 and env = 1 code = 1 we draw code = 1

Through the angle of constraint solving, the effect of applying a

rule amounts to domain narrowing. One local consistency check

performed on the domains is the following: when the domain De of

env is reduced to {1}, the domain Dc of code is narrowed down to

Dc ({1}. Thus, if Dc ({1} is empty, inconsistency is immediately

detected.

On the other hand, a query like:

select code from R where env = 0
yields three solutions for the IP code since there is no restriction

then on the degree of protection. Consequently, there will be no

domain reduction.

3.3.2 Modus tollens
The symmetric query:

select env from R where code = 0
gives again a unique solution:

Answer(env) = {0}

This time, env = 0 is a result that cannot be obtained directly, in

forward or backward chaining mode, from:

env = 1 code = 1

since it doesn’t match the antecedent nor the consequent of the rule.

It is indirectly the result of the contrapositive of the rule, i.e., the

implication:

code) 1 env) 1

The contrapositive can be expressed in our language as:

code # 0 env = 0

But there is no need to add it to the rule base, since the implication

and its contrapositive are logically equivalent. The engine takes

care of it through a local consistency check: when the domain Dc of

code is reduced to {-1, 0}, the domain De of env is narrowed

down to De ({0}. Thus, if De ({0} is empty, inconsistency is

immediately detected.

It should be clear from the above that local consistency

enforcement at the rule level can endow us with versatile deductive

inference capabilities, through domain reductions.

3.4 What propagation guarantees

Local consistency is a prerequisite for global consistency. The

preceding examples required only bounds-consistency checking

(stronger degrees of consistency can be defined).

Before moving to the system level (i.e., to the consistency

analysis of a set of rules), we need to recall the main properties of

the general filtering mechanism which is at work with a finite

domain solver [6].

While preserving equivalence, the propagation mechanism

basically transforms formula (1) into formula (2):

% x R1(x) " ..." Rm(x) " x & D1 ' ...' Dn (2)

The structural constraints Ri of (1) are unchanged. Only the variable

domains may change and be contracted from Dj to Dj. The reduced

domain Dj * Dj is the result of a fixpoint computation in which all

inter-related rules take part. Note that domain constraints are the

sole ones handled globally.

No matter how local consistency is defined and implemented,

the following property hold:

1. if there are any solutions to the system, then the solutions lie

within the bounds specified by the cross-product of the reduced

domains.

In other words, there are no solutions outside. Should one domain

become empty, then we have the proof that the system is

inconsistent.

When no domain is empty, the following properties equally hold:

2. for each constraint Ri, the formula (3i) is satisfiable:

% x Ri(x) " x & D1 ' ...' Dn (3i)

3. in particular, for each variable xj, the formulas (3ijmin) and

(3ijmax) are satisfiable:

% x Ri(x) " xj = min(Dj) " x & D1 ' ...' Dn (3ijmin)

% x Ri(x) " xj = max(Dj) " x & D1 ' ...' Dn (3ijmax)

In other words, each rule does its best to narrow down the domains

(e.g., by checking the consistency of partial assignments involving

maximum and minimum domain values). When all domains reduce

to a point, i.e., when min(Dj) = max(Dj), those properties guarantee

that the unique corresponding assignment is indeed a solution.

However in general, nothing certifies that a satisfying assignment

for one constraint is also a satisfying assignment for another

constraint.

We now come to a very specific case for which we can prove,

thanks to a distinguished witness point, that local consistency

automatically enforces global consistency.

4 A REMARKABLE CLASS OF CONDITIONAL
CONSTRAINTS

Using vector notation, we’ll write x # y whenever x is greater than y

component-wise. The binary relation # defines a partial order in the

space. If x and y are two integer points, their least upper bound is

the point z = max {x, y} with integer coordinates zj = max {xj, yj}.

4.1 Semilattices

A partially ordered set S is said to be a join- (resp., meet-)

semilattice if for all elements x and y of S, the least upper bound

(resp., the greatest lower bound) of the pair {x, y} exists.

If S is a finite join-semilattice, it follows that every non-empty

subset has a least upper bound. So, if S is non empty, it has a least

47

upper bound, max(S), which is the maximum (or greatest element)

of S.

Now, with S referring to the extensional database, this is the

remarkable property that every constraint of our class will exhibit:

the presence of a "max" (resp., a "min") element. Following [7], we

can express the same property conveniently by referring to the

intensional relation R.

4.2 Max-closed constraints

4.2.1 Motivation for study
Cooper and Jeavons claim that max-closed constraints [7] give rise

to a class of tractable problems which "generalizes the notion of a

Horn formula in propositional logic to larger domain sizes". That is

precisely what we are aiming at.

4.2.2 Definition
A relation R is said to be max-closed if:

whenever R(x) and R(y) hold, then R(max {x, y}) holds.

4.2.3 Example
Constraints setting upper and lower bounds on the domains of

variables, like 2 # xj or xj # 5, are max-closed.

More generally, all unary constraints are max-closed.

4.2.4 Property of max-closed systems

Consider a system with m max-closed constraints Ri in n unknowns

ranging over finite domains. Then, if none of the reduced domains

is empty, the greatest element of the cross-product D1 ' ...' Dn

satisfies the formula:

% x R1(x) " ..." Rm(x) " x & D1 ' ...' Dn (2)

4.2.5 Proof
If D1 ' ...' Dn is not empty, the maximum element is (max(D1), ...,

max(Dn)). Let us first show that it satisfies the formula:

% x Ri(x) " x & D1 ' ...' Dn (3i)

Consider the partial assignment xj = max(Dj). By definition of the

reduced domains, there is an instantiation xj of x which satisfies the

formula:

% x Ri(x) " xj = max(Dj) " x & D1 ' ...' Dn (3ijmax)

We can thus exhibit n points x1, ..., xn satisfying Ri.

Since Ri is max-closed, max {x1, ..., xn} belongs to Ri and it

corresponds the point (max(D1), ..., max(Dn)).

Since (max(D1), ..., max(Dn)) satisfies x & D1 ' ...' Dn, as well

as each constraint Ri(x), it also satisfies their conjunction. Hence

the property.

4.2.6 Alternative view
Geometrically speaking, the extensional database of a max-closed

constraint is a finite semilattice with a greatest element. The non-

empty intersection of such semilattices is a semilattice with the

same property.

4.2.7 Main consequence
A max-closed system that is locally consistent is globally

consistent. Finite domain propagation is therefore sufficient for

global consistency checking.

4.2.8 Corollary
Any system of max-closed constraints is polynomial time solvable.

This follows from the fact that the propagation algorithm is

polynomial in the size of the constraint system and of the integer

grid used for finitely discretizing the space (we here assume that

grid is large enough to carry out all the computations accurately1).

4.3 Sub-language definition

We now restrict our attention to rule based systems only containing

contraints of a special syntactic kind:

• inequalities of type m

• conditionals of type h.

By showing that those constraints have the max-closed property,

we’ll derive a scalability certificate for the knowledge base. This

means that sizeable problem instances can be checked for

consistency without resorting to enumeration.

4.3.1 max-closed inequalities
Assuming that all the aj’s are non-negative coefficients, we define a

constraint of type m as:

• either of the form:

a1x1 + ... + anxn $+b

• or of the form:

a1x1 + ... + ak-1xk-1 + ak+1xk+1 + ... + anxn $+akxk + b

In other words, a constraint of type m is a linear inequality a’x $ b

with at most one negative coefficient (a’k = –|ak|).

Property Every inequality of type m is max-closed.

To simplify the proof, we’ll write:

a1x1 + ... + akxk + ... + anxn $+a+xk + b

where xk can appear on both sides with non-negative coefficients

(the trick is: if a+ = 0, we are in the first case; if ak = 0, we are in the

second). Now assume with have:

a1x1 + ... + anxn $+a+xk + b

and: a1y1 + ... + anyn $+a+yk + b

Let zj = max {xj, yj}.

Since zi $ xi, a1z1 + ... + anzn $ a1x1 + ... + anxn $+a+xk + b

Since zi $ yi, a1z1 + ... + anzn $ a1y1 + ... + anyn $+a+yk + b

Hence: a1z1 + ... + anzn $ max {a+xk + b, a+yk + b}

that is: a1z1 + ... + anzn $ a+zk + b

Let us briefly mention a direct and important consequence of that

property: linear integer systems involving constraints of type m

form a polynomial class [8]. When using finite domain solvers,

propagation implements a global consistency check as well.

4.3.2 max-closed conditionals
We define a rule of type h as a conditional formula:

Ax # b ax $ a+xk + b

where

• A is a non-negative matrix (i.e., all A entries are $ 0)

• the consequent is an inequality of type m.

Property Every conditional of type h is max-closed.

Assume again we have two satisfying instanciations x and y:

a1x # b1 " ... " amx # bm ax $ a+xk + b

a1y # b1 " ... " amy # bm ay $ a+yk + b

Let zj = max {xj, yj}. By definition ai $ 0, so we always have aix+#

aiz and aiy+# aiz.

Hence, if a1z # b1 " ... " amz # bm is true, the conditions:

a1x # b1 " ... " amx # bm

a1y # b1 " ... " amy # bm

are both true.

We therefore have:

ax $ a+xk + b

and ay $ a+yk + b.

1. The price to pay can be a huge "constant" time.

48

The latter being a max-closed system1, we infer:

az $ a+zk + b

4.3.3 Level of generality
Clearly, our sub-language us not universal. So, what does it

encompass?

First, it allows to write rules with:

• true antecedents: 0x # 1 (i.e., no conditions for facts)

• false consequent: 0x $ 1 (for expressing integrity constraints).

So, right- and left-hand sides can be considered optional.

Second, by a duality argument, we have the min-closed property

for the reverse order:

Ax $ b ax # a+xk + b

Min-closed systems that are locally consistent are ipso facto

globally consistent2.

Third, we can express Horn propositional clauses

x1 " ... " xn-1 xn

in two different ways:

• either as (dual) inequalities of type m

x1 + ... + xn-1 # xn + (n–2)

• or as (dual) conditionals of type h

x1 $ 1+" ... " xn-1 $ 1 xn $ 1

with x & {0,1}n.

The fact that propagation implements unit resolution explains the

good behaviour of finite domain constraint solvers in that case.

Finally, the theory applies to our introductory example. We can

rewrite env = 1 code = 1 as a (dual) conditional of type h:

env $ 1 0 # code -1, i.e., as:

env $ 1 code $ 1

Therefore, our single rule enjoys the min-closed property.

4.3.4 Constraint solving with SAT solvers
Provided that no addition is involved, a similar conclusion could be

reached with the unary representation of integer intervals suggested

by Bailleux et al. [9]. When translating a constraint into a

propositional logic formula for SAT solving, this alternative

mapping cleverly encodes a domain of size n using a vector of n–1

booleans bi. If i–1 refers to the ith element of the domain of x, we

have the correspondance:

bi = 1 if and only if x is greater than i (2 #+i+#+n)

The bi’s are then connected by a set of Horn clauses:

bn bn–1

...

b2 b1

rendering the logical entailment x $ i x $ i–1.

For domains of size 2, we regain the standard encoding.

For a domain of size 3 such as {–1, 0, 1}, we need 2 booleans:

x = –1 is encoded as [0,0], x = 0 as [1,0] and x = 1 as [1,1].

This way, our single (function-free) introductory rule directly

translates into a Horn system, thus confirming that solving can go

without developing a full decision tree.

The class property is more general and removes the need for a

reformulation. As a side effect, the theory is able to explain why,

without going into many experiments, such SAT encodings can be

more efficient.

4.4 Application to configuration problems

We’ll conclude this paper with an example from the literature on

dynamic product configuration. For the sake of brevity, we’ll use

the simplified version of [10] which describes the possible variants

of a hierarchical car model with 2 first-level characteristics (frame

and package) and 3 components (engine, aircond, sunroof), the

latter 2 being optional. The product structure of figure 2 can easily

be flattened, leading to a problem in 8 unknowns, subject to the

configuration rules listed in table 1.

In our modeling, domains are ordered from left to right in their

definition statement. For optional components, attributes have a

supplementary "not available" value. When a component is not

"active" (in the sense it isn’t part of the solution), its attributes are

assigned the na value (any other assignment would be irrelevant).

Figure 2. The 8 car characteristics

Table 1. Car configuration rules

A1 Sunroof option included if Package = luxury

A2 Sunroof option included if Package = deluxe

A3 Aircond option included if Package = luxury

A4 Sunroof option excluded if Frame = convertible

C5 Package = standard excludes Frame = convertible

C6 Package = standard excludes Aircond.Type = ac2

C7 Package = luxury excludes Aircond.Type = ac1

C8 Sunroof.Type = sr1 and Aircond.Type = ac2

excludes Sunroof.Glass = tinted

A9 Aircond option included if Sunroof.Type = sr1

Part of the configuration rules are "activity" rules (A) for selecting

options. The others are "compatibility" rules (C).

Table 2. Translation into logic rules

1-2 package $ deluxe sunroof_opt $ selected

3 package $ luxury aircond_opt $ selected

4 frame $ convertible sunroof_opt # discarded

5 package = standard frame # sedan

6 package = standard aircond_type # ac1

7 package $ luxury aircond_type $ ac2

8 sunroof_type $ sr1 " aircond_type $ ac2

 sunroof_glass # plain

9 sunroof_type $ sr1 aircond_opt $ selected

The translation of the configuration rules gives 8 logic rules. We

end up with adding 6 extra ones in order to keep the "not available"

value for discarded options3:

10 aircond_opt $ selected aircond_type $ ac1

11 aircond_type $ ac1 aircond_opt $ selected
1. Should the consequent be any type of max-closed constraint, the

validity of the conclusion would not be affected.
2. Of course, the property is lost if min-closed and max-closed

constraints are mixed together. 3. E.g., aircond_type = na iff aircond_opt = discarded.

Frame ,

Package ,

Engine Size ,

Aircond Type ,

Sunroof Type ,

Glass ,

frame & {hatchback, sedan, convertible}

package & {standard, deluxe, luxury}

engine_size & {small, med, large}

aircond_opt & {discarder, selected}

aircond_type & {na, ac1, ac2}

sunroof_opt & {discarded, selected}

sunroof_type & {na, sr2, sr1}

sunroof_glass & {na, plain, tinted}

49

12 sunroof_opt $ selected sunroof_type $ sr2

13 sunroof_type $ sr2 sunroof_opt $ selected

14 sunroof_opt $ selected sunroof_glass $ plain

15 sunroof_glass $ plain sunroof_opt $ selected

Nearly all of the rules are of type h. The only exceptions are the

conditions 5 and 6 laid down on the standard package assignment.

Hence, a complete consistency diagnosis can be achieved with at

most one variable split, i.e., with two checks. In comparison, the

product of the domain sizes would give a gross overestimate of

2916 tries. For this configuration problem, the worst case

complexity is consequently quite low.

5 SUMMARY

We have defined a domain language with a logical semantics whose

statements are sets of facts (generalized here to conjunctions of

integer linear equations and inequalities, i.e., to IP models), and sets

of rules (i.e., conjunctions of conditionals).

A rule is just a high-level constraint to satisfy, and should be

understandable at the knowledge level. By viewing a constraint as a

set of low-level rewrite rules, the authors of [11] follow a

diametrically opposed goal (which amounts to describe how to

procedurally enforce local consistency at the implementation level).

Rather than programming experts, the target users for our

declarative modeling language are domain experts. The reductions

entailed by the rules on the variables’ domains are akin to

inferences and are not limited to the usual forward chaining mode.

We have identified a sub-language with a remarkable property

and linked it to the theory of max-closed constraints. Knowledge

bases expressed in that language can be certified conflict-free in

polynomial time, by a propagation engine. Global consistency of

the constraint system automatically derives from local consistency.

There is no search involved, therefore no concern for scalability.

Although severely restricted, this sub-language generalizes Horn

propositional logic to finite domains that are non-binary.

On the practical side, we’ve given an insight into the

applicability of this theory to technical engineering problems where

maintaining the consistency of a large and possibly dynamic model

is central. A similar analysis could also provide some guidance on

how to derive efficient encodings for handing the formula to check

over to a SAT solver.

REFERENCES

[1] Fromherz M., and Saraswat V., Model-Based Computing: Using
Concurrent Constraint Programming for Modeling and Model
Compilation. In Principles and Practice of Constraint Programming -
CP'95 Industrial Session, (Montanari & Rossi eds.), LNCS 976, 629-
635, Springer, 1995.

[2] ISO 10303-11 standard. Industrial automation systems and integration
— Product data representation and exchange — Part 11: Description
methods: The EXPRESS language reference manual, ISO, 1994.

[3] Soininen, T. and Niemelä, I., Developing a declarative rule language
for applications in product configuration. In Proceedings of the First
International Workshop on Practical Aspects of Declarative Languages
- PADL'99 (Gupta ed.), LNCS 1551, 305-319, Springer, 1998.

[4] Lobo J., Minker J., and Rajasekar A., Theory of Disjunctive Logic
Programs. In Computational Logic: Essays in honor of Alan Robinson
(Lassez, ed.), MIT Press, 1991.

[5] Balduccini M., Gelfond M. and Nogueira M., Answer set based design
of knowledge systems. Annals of Mathematics and Artificial
Intelligence, 47:1-2, 183 - 219, 2006.

[6] Cohen J. (guest editor), Special issue on Concepts and Topics in
Constraint Programming Languages. Constraints, 4:4, Kluwer, 1999.

[7] Jeavons P. and Cooper M., Tractable Constraints on Ordered Domains,
Artificial Intelligence, 79:2, 327-339, 1995.

[8] Chandrasekaran R., Integer programming problems for which a
simple rounding type of algorithm works. In Progress in Combinatorial
Optimization (Pulleblank ed.), 10-106, Academic Press, 1984.

[9] Bailleux O., Boufkhad Y. and Roussel O., New Encodings of Pseudo-
Boolean Constraints into CNF. In Theory and Applications of
Satisfiability Testing - SAT'09, 181-194, Springer, 2009.

[10] Narboni G., A Tentative Approach for Integrating Sales with Technical
Configuration. In Papers from the 2007 AAAI Workshop on
Configuration (O’Sullivan & Orsvarn eds.), TR WS-07-03, 41-44,
AAAI Press, 2007.

[11] Apt K. and Monfroy E., Constraint Programming viewed as Rule-
based Programming. Theory and Practice of Logic Programming, 1:6,
713-750, 2001.

50

Protocols for Governance-free Loss-less Well-organized
Knowledge Sharing

Philippe MARTIN 1

Abstract. This article first lists typical problems of knowledge sha-

ring approaches based on static files or semi-independently created

ontologies or knowledge bases (KBs). Second, it presents a proto-

col permitting people to collaboratively build and evaluate a well-

organized KB without having to discuss or agree. Third, it introduces

extensions of this support to allow a precise collaborative evaluation

of information providers and pieces of information. Fourth, it shows

how a global virtual KB can be based on individual KBs partially

mirroring each other.

1 INTRODUCTION

Ontology repositories – and, more generally, the Semantic Web –

are often envisaged as composed of many small static (semi-)formal

files (e.g., RDF or RDFa documents) more or less independently

developed, hence loosely interconnected and with many implicit

redundancies or inconsistencies between them [16] [4]. These re-

lations are difficult to recover manually and automatically. This

“static file based approach” – as opposed to a “collaboratively-built

well-organized large knowledge base (cbwoKB) server approach” –

makes knowledge re-use tasks complex to support and do correctly

or efficiently, especially in a collaborative way. Most Semantic Web

related research works are intended to support such tasks (ontology

creation, retrieval, comparison and merging). However, most often,

they lead people to create new files – thus contributing to the prob-

lems of knowledge re-use – instead of inserting their knowledge into

a cbwoKB. Such a KB may be on a single machine or may be a

global virtual KB distributed into various correlated KBs on several

Web servers and/or the machines of a peer-to-peer network.

Except for WebKB-2 [13] (webkb.org) - the tool implementing

the new techniques described in this article, no other ontology/KB

server has an ontology-based protocol permitting and enforcing or

encouraging people to interconnect their knowledge into a cbwoKB,

while keeping it well-organized (this means that detected partial

redundancies or inconsistencies are prevented or made explicit via

relations of specialization, identity and/or correction) and without

forcing them to agree on terminology or beliefs. Indeed, i) this is

often but wrongly assumed to be impossible or to involve central-

ization or domain restrictions, ii) this requires the users to see and

write (semi-)formal knowledge representations, and iii) this does not

directly re-use already existing ontologies. Furthermore, supporting

a cbwoKB also requires proposing and managing a large general

ontology (WebKB-2 does so). Other KB servers/editors (e.g., On-

tolingua, OntoWeb, Ontosaurus, Freebase, CYC and semantic wiki

servers) have no such protocols and i) let every authorized user

1 University of La Reunion and adjunct researcher of Griffith University,
email: ec@phmartin.info

modify what other ones have entered (this discourages information

entering or leads to edit wars), or ii) require all/some users to approve

or not changes made in the KB, possibly via a workflow system

(this is bothersome for the evaluators, may force them to make

arbitrary selections, and this is a bottleneck in information sharing

that often discourages information providers). By avoiding these two

governance problems and leading to a well organized KBs, such

kinds of cbwoKB protocol form a basis for a scalable knowledge

sharing, even when multiple communities are involved. Actually,

unlike with other approaches, a same cbwoKB can be used by many

communities with partially overlapping focus since the KB is orga-

nized and can be filtered/queried/browsed by each person according

to her needs or according to a community viewpoint. Even if built

by many communities a (virtual) cbwoKB is unlikely to be huge

since i) redundancies are reduced, ii) “well organized knowledge”

(as opposed to data) is difficult to build. However, a cbwoKB can

permit to index or relate the content of data-bases. In any case, the

bigger and the more organized the cbwoKB, the more information

are easier to access and compare. Since building a cbwoKB can

partly re-use resources of more classic (i.e., less organized) Semantic

Web solutions or database solutions, it can be incrementally built to

overcome the limitations of these solutions when they become clear

and annoying to the users.

Section 2 presents the knowledge representation model used by

the rules of the collaborative “KB editing” protocol of WebKB-2.

Section 3 presents them and introduces many yet unpublished ideas.

Due to space restrictions and for readability reasons, the model and

rules are presented via sentences rather than in a fully formal way.

Furthermore, as with most methodological rules, the “completeness”

criterion does not apply well to these rules.

Collaborative evaluation of knowledge representations is an ex-

tension of collaborative KB editing since, for precision and re-use

purpose, evaluations should themselves be knowledge representa-

tions. In this article, the collaboration scheme of WebKB-2 is not

developed but quickly introduced in the last point of the collaborative

“KB editing” protocol.

This protocol is not restricted to a physical KB: Section 4 shows

how a global virtual cbwoKB can be composed of correlated cb-

woKBs of users or communities of users.

Section 5 concludes and reminds that the presented knowledge

sharing approaches are complementary. WebKB-2 has been applied

to the collaborative representation of many domains by students (for

learning purposes), researchers (for knowledge sharing and evalua-

tion purposes) and, currently, experts in the classification of coral

species. Due to space restrictions, no evaluation by these users is

reported in this article.

51

2 LANGUAGE MODEL FOR THE PROTOCOL

The cbwoKB editing protocol used in WebKB-2 are not tied to

any particular knowledge representation (KR) language or inference

mechanism (hence, this is not the point of this article and no compa-

rison is made on such mechanisms). They only require that conflicts

between knowledge representations – i.e., partial redundancies or

inconsistencies between terms or statements - are detected by some

inference mechanism or by people (hence, the protocol also works

with informal pieces of knowledge as long as they can be inter-

related by semantic relations). The more conflicts between state-

ments are detected, the more relations between the statements are

set between them to solve the conflicts, and hence the more the KB

is kept organized and thus exploitable.

The model for the protocol – i.e., their view on a KB (whichever

KR language it actually uses) – is a set of objects which are either

terms or statements. Every object has at least one associated source

(creator, believer, interpreter, source file or language) represented by

a formal term. A formal term is a unique identifier for anything that

can be though of, i.e., either a source, a statement or a category. It has

a unique meaning which may be made partially/totally explicit by its

creator via definitions with necessary and/or sufficient conditions.

An identifier may be an URI or, if it is not a creator identifier, may

include the identifier of its creator (this is the classic solution to avoid

lexical conflicts between terms from various sources). An informal

term is one name of one or several objects. Two objects may share

one or several names but cannot share identifiers. A statement is a

sentence that is either formal, semi-formal or informal. It is informal

if it cannot be translated into a logic formula, for example because

it does not have a formal grammar with an interpretation in some

logics. Otherwise, it is formal if it only uses formal terms, and

semi-formal if it uses some informal terms. A statement is either a

category definition or a belief. A belief must have a source that is its

creator and that believes in it and/or that has represented (and hence

interpreted) a statement from some other source. Finally, a category

is either a type of objects or an individual (object). A type (a “class”

in OWL) is either a relation type or a concept type. An individual is

an instance of a first-order type.

The KR model of WebKB-2, its associated notations and its

inference mechanism must also be mentioned in this section

for illustration purposes. Although graph-based, this model is

equivalent to the model of KIF (Knowledge Interchange Format;

http://logic.stanford.edu/kif/dpans.html), i.e., it permits to use first

order logic plus collections (sets, lists, ...) and contexts (meta-

statements that restrict the interpretation of statements). WebKB-2

allows the use of several notations: RDF/XML (an XML format for

knowledge using the RDF model), the KIF standard notation and

other ones which are here collectively called KRLX. These KRLX

languages were specially designed to ease knowledge sharing: they

are expressive, intuitive and normalizing, i.e., they guide users to

represent things in ways that are automatically comparable. One of

them is a formal controlled English named FE. It will be used for the

examples along with KIF. These languages can be used for creating

assertion/query commands and these commands can be sent to the

WebKB-2 server via the HTTP/CGI protocol, from an application

or from a WebKB-2 Web form. Other communication interfaces are

being implemented: one based on SOAP and one based on OKBC

(Open Knowledge Base Connectivity; http://www.ai.sri.com/˜okbc)

to query (or be queried by) frame-based tools or servers, e.g., Loom,

SRI and the GKB-Editor.

Here are some examples of terms in KRLX that highlights its

use (the various kinds of quotes are important) en#"bird" and

"bird" refer to the English informal word “bird”. wn#bird is a

formal term referring to one of the WordNet categories for “bird”.

Here are examples of statements in FE. u1#u2#"birds fly"

is an informal statement from u2 and represented by u1.

u1#`any u1#bird is pm#agent of a pm#flight' is a formal

statement and definition by u1 of u1#bird as something

that necessarily fly (the first quote is a backquote, not

a straight quote, to allow the embedding of statements).

u1#`every u1#bird is agent of a flight' is a semi-

formal statement and belief of u1 that “every u1#bird flies”. In KIF

[9], these last two statements would respectively be

(creator u1 ˆ(defrelation u1#bird (?b) :=>

(exists ((?f pm#flight)) (pm#agent ?b ?f)))) and

(believer u1 ˆ(forall ((?b u1#bird))

(exists ((?f flight)) (agent ?b ?f)))).

When the creator of an object is not explicitly specified, WebKB-

2 exploits its “default creator” related rules and variables to find this

creator during the parsing. Similarly, unless already explicitly speci-

fied by the creator, WebKB-2 uses the “parsing date” for the creation

date of a new object. The creator of a belief is also encouraged to add

contextualizing relations on it (at least temporal and spatial relations

must be specified).

RDF/XML – the W3C recommended linearisation of RDF – and

OWL – the W3C recommended language ontology – are currently

not particularly well suited for the cbwoKB editing protocol or, more

generally, for the representation or interconnection of expressive

statements from different users in a same KB.

• They offer no standard way to associate a believer, creator or

interpreter to every object in an RDF/XML file. Since 2003,

RDF/XML has no bagID keyword, thus no way to represent

contexts and hence believers or beliefs. XML name-space prefixes

(e.g., u1:bird), Dublin Core relations and statement reification

do not permit to do this. This is likely a temporary only constraint

since many RDF-related languages or systems extend RDF in this

direction: Notation3 (N3), Sesame, Virtuoso, ...

• RDF and OWL – like almost all description logics – do not permit

their users to distinguish definitions from universal quantifica-

tions. More precisely, they do not offer a universal quantifier.

N3 does (Turtle, the RDF-restricted subset of N3, does not). The

distinction is important since, as noted in the documentation of

KIF [9], a universally quantified statement (belief) may be false

while a definition cannot. A definition may be said to be “nei-

ther true nor false” or “always true by definition”. A user u1 is

perfectly entitled to define u1#cat as a subtype of wn#chair;

there is no inconsistency as long as the ways u1#cat is further

defined or used respect the constraints associated with wn#chair.

A definition may be changed by its creator but then the meaning of

the defined term is changed rather than corrected. This distinction

is important for a cbwoKB editing protocol since it leads to

different conflict resolution strategies: “term cloning” and “loss-

less correction” (Point 5 and Point 6 of the next section).

• Many natural language sentences are difficult to represent in

RDF/XML+OWL or N3+OWL, since they do not yet have various

kinds of numerical quantifiers, contexts, collections, modalities, ...

(FE has concise syntactic sugar for the different kinds). However,

at least N3 might soon be extended.

• Like most formal languages, RDF/XML and N3 do not accept

– or have a special syntax for – the use of informal objects

instead of formal objects. KRLX does and this permits WebKB-

2 to create one specialization/generalization hierarchy catego-

52

rizing all objects. More precisely, this is an “extended specia-

lization/generalization” hierarchy since in WebKB-2 the classic

“generalization” relation between formal objects (logical implica-

tion) has been extended to apply to informal objects too.

For its cbwoKB editing protocol, WebKB-2 detects partial

redundancies or inconsistencies between objects by exploiting

exclusion and extended specialization relations between objects. A

statement Y is an extended specialization of a statement X (i.e.,

Y includes the information of X and hence either contradicts it or

makes it redundant) if X structurally matches a part of Y and if each

of the terms in this part of Y is identical or an extended specialization

of its counterpart term in X. For example, WebKB-2 can detect that

u2#`Tweety can be agent of a flight with duration at

least 2.5 hour' (which means “u2 believes that

Tweety can fly for at least 2.5 hours”) is an extended

specialization (and an “extended instantiation”) of both

u1#`every bird can be agent of a flight' and

u1#`2 bird can be agent of a flight'. In KIF, the

first of these two statements can be written:

(believer u1 '(modality possible

'(forall ((?b bird))

(exists ((?f flight)) (agent ?b ?f))))

Furthermore, these last two statements can be found to be

extended specializations (and redundant with) respectively

u2#`75% of bird can be agent of a flight' and

u2#`at least 1 bird can be agent of a flight'.

Similarly, this last graph can be found to be inconsistent with

u3#`no bird can be agent of a flight'.

WebKB-2 uses graph matching for detecting extended speciali-

zations. Other inference mechanisms could be used. This match-

ing takes into account numerical quantifiers and measures, not just

existential and universal quantifiers. Apart for this, it is similar to

the classic graph matching for a specialization (or conversely, a

generalization which is a logical deduction) between positive con-

junctive existential formulas (with or without an associated positive

context, i.e., a meta-statement that does not restrict its truth domain).

This classic graph matching is sound and complete with respect to

first-order logic and can be computed with polynomial complexity

if the query graph (X in the above description) has no cycle [5].

Apart from this restricted case, graph matching for detecting an

extended specialization is not always sound and complete. However,

this operation works with language of any complexity (it is not

restricted to OWL or FOL) and the results of searches for extended

specializations of a query graph are always “relevant”.

3 COLLABORATIVE KB EDITING PROTOCOL

The rules of the protocol are intended for each object to be

connected to at least another object via relations of specializa-

tion/generalization, identity and/or argumentation. These rules also

permit a loss-less information integration since they do not force to

make knowledge selections. They apply to the addition, modification

or removal of an object in the KB, e.g., through a graphical interface

or via the parsing of a new command in a new input file. This does

not serialize objects in the KB and waiting till the whole input file

is parsed would not permit to detect more partial redundancies or

inconsistencies between the objects. The word “user” is here used as

a synonym for “source”.

1. Any user can add and use any object but an object may only be

modified or removed by its creator.

2. Adding, modifying or removing a term is done by adding, modi-

fying or removing at least one statement (generally, one relation)

that uses this term. A new term can only be added by specializing

another term (e.g., via a definition), except for process types

which, for convenience purposes, can also be added via subpro-

cess/superprocess relations. In WebKB-2, every new statement

is also automatically categorized into the extended specialization

hierarchy. A new informal statement must also be connected

via an argumentation relation to an already stored statement. In

summary, all objects are manually or automatically inserted in the

extended specialization hierarchy and/or the subprocess hierarchy,

and thus can be easily searched and compared. However, it is clear

that if one user (say, u2) enters a term (say, u2#object) that is

implicitly semantically close to another user’s term (say, u1#thing)

but does not manually relates them or manages to give u2#object a

definition that is not automatically comparable to the definition of

u1#thing (i.e., there is no partial redundancies between the two

definition) then the two terms cannot be automatically related

by the system and the implicit redundancy cannot be rejected

by the system. Here, the problem is that u2 has not respected

the following “best practice” rule (which is part of WebKB-2

normalization rules): “always relate a term to all existing terms

in the KB via the most important or common relations: i) transi-

tive relations, especially (extended) specialization/generalization

relations and mereological relations (to specify parts, contain-

ers, ...), ii) exclusion/correction relations (especially via subtype

partitions), iii) instance/type relations, iii) basic relations from/to

processes, iv) contextualizing relations (spatial, temporal, modal,

) and v) argumentation relations”.

3. If adding, modifying or removing a statement introduces an im-

plicit redundancy (detected by the system) in the shared KB, or if

this introduces a detected inconsistency between statements be-

lieved by the user having done this action, this action is rejected.

Thus, in case of an addition, the user must refine his statement

before trying to add it again or he must first modify at least one

of his already entered statements. An “implicit” redundancy is a

redundancy between two statements without a relation between

them making the redundancy explicit. Such a relation is typically

an equivalence relation in case of total redundancy and an ex-

tended specialization relation (e.g., an “example” relation) in case

of partial redundancy. As illustrated in the previous section, the

detection of implicit extended specializations between two objects

reveals an inconsistency or a total/partial redundancy. It is often

not necessary to distinguish between these two cases to reject the

newly entered object. Extended “instantiations” (one example was

given in the previous section) are exceptions: they do not reveal

an inconsistency or a total/partial redundancy that needs to be

made explicit, since adding an instantiation is giving an example

for a more general statement. It is important to reject an action

introducing a redundancy instead of silently ignoring it because

this often permits the author of the action to detect a mistake, a

bad interpretation or a lack of precision (on his part or not). At the

very least, this reminds the users that they should check what has

already been represented on a subject before adding something on

this subject.

4. If the addition of a new term u1#T by a user u1 introduces

an inconsistency with statements of other users, this action is

rejected by the system. Indeed, such a conflict reveals that u1 has

directly or indirectly used at least one term from another user in

his definition of u1#T and has misunderstood the meaning of this

term. The addition by a user u2 of a definition to u1#T is actually

53

a belief of u2 about the meaning of u1#T. This belief should be

rejected if it is found (logically) inconsistent with the definition(s)

of u1#T by u1. An example is given in Point 6.

5. If the addition, modification or removal of a statement defining

an already existing term u1#T by a user u1 introduces an in-

consistency involving statements directly or indirectly re-using

u1#T and created or believed by other users (i.e., users different

from u1), u1#T is automatically cloned to solve this conflict and

ensure that the original interpretation of u1#T by these other users

is still represented. Indeed, such a conflict reveals that these other

users had a more general interpretation of u1#T than u1 had or

now has. Assuming that u2 is this other user or one of these other

users, the term cloning of u1#T consists in creating u2#T with

the same definitions as u1#T except for one, and then replacing

u1#T by u2#T in the statements of u2. The difficulty is to chose

a relevant definition to remove for the overall change of the KB

to be minimal. In the case of term removal by u1, term cloning

simply means changing the creator’s identifier in this term to the

identifier of one of the other users (if this generated term already

exists, some suffix can be added). In a cbwoKB server, since

statements point to the terms they use, changing an identifier does

not require changing the statements. In a global virtual cbwoKB

distributed on several servers, identifier changes in one server need

to be replicated to other servers using this identifier. Manual term

cloning is also used in knowledge integrations that are not loss-

less [6].

In a cbwoKB, it is not true that beliefs and term definitions

“have to be updated sooner or later”. Indeed, in a cbwoKB,

every belief must be contextualized in space and time, as in

u3#` `75% of bird can be agent of a flight' in

place France and in period 2005 to 2006'

(such contexts are not shown in the other examples of

this article). If needed, u3 can create the formal term

u3#75%_of_birds_fly__in_France_from_2005_to_2006

to refer to this last belief. Due to the possibility of contextualizing

beliefs, it is rarely necessary to create formal terms such

as u2#Sydney_in_2010. Most common formal terms, e.g.,

u3#bird and wordnet1.7#bird never need to be modified

by their creators. They are speciali-zations of more general

formal terms, e.g., wn#bird (the fuzzy concept of bird shared

by all versions of the WordNet ontologies). What certainly

evolutes in time is the popularity of a belief or the popularity

of the association between an informal term and a concept. If

needed, this changing popularity can be represented by different

statements contextualized in time and space.

6. If adding, modifying or removing a belief introduces an implicit

potential conflict (partial/total inconsistency or redundancy)

involving beliefs created by other creators, it is rejected.

However, a user may still represent his belief (say, b1) – and thus

“loss-less correct” another user’s belief that he does not believe

in (say, b2) – by connecting b1 to b2 via a corrective relation.

E.g., here are two FE statements by u2, each of which corrects a

statement made earlier by u1:

u2#` u1#`every bird is agent of a flight' has for

corrective_restriction u2#`most healthy

flying_bird can be agent of a flight' ' and

u2#` u1#`every bird can be agent of a flight' has

for corrective_generalization

u2#`75% of bird can be agent of a flight' '.

In the second case, u2’s belief generalizes u1’s belief and corrects

it since otherwise u2 would not have needed to add it. In the first

case, u2’s belief specializes u1’s belief (except for a quantifier

which is generalized) and corrects it. In both cases, WebKB-2

detects the conflict by simple graph-matching.

If instead of the belief ‘every bird can be agent of a flight’ (all

birds can fly), u1 entered the definition ‘any bird can be agent of a

flight’, i.e., if he gave a definition to the type named “bird”, there

are two cases (as implied by the rules of the two previous points):

• u1 originally created this type (u1#bird); then, u2’s attempt to

correct the definition is rejected, or

• u1 added a definition to another source’s type, say

wn#bird since this type from WordNet has no

associated constraint preventing the adding of such a

definition; then i) the types u1#bird and u2#bird

are automatically created as clones (and subtypes

of) wn#bird, ii) the definition of u1 is automatically

changed into `any u1#bird is agent of a flight',

and iii) the belief of u2 is automatically changed into

u2#`75% of u2#bird can be agent of a flight'.

In WebKB-2, users are encouraged to provide argumentation re-

lations on corrective relations, i.e., a meta-statement using argu-

ment/objection relations on the statement using the corrective re-

lation. However, to normalize the shared KB, they are encouraged

not to use an objection relation but a “corrective relation with

argument relations on them”. Thus, not only the objections are

stated but a correction is given and may be agreed to by several

persons, including the author of the corrected statement (who may

then remove it). Even more importantly, unlike objection relations,

most corrective relations are transitive relations and hence their

use permits better organization of argumentation structures, thus

avoiding redundancies and easing information retrieval. The use

of corrective relations makes explicit the disagreement of one user

with (his interpretation of) the belief of another user. Technically,

there is no inconsistency: an assertion A may be inconsistent

with an assertion B but a belief that “A is a correction of B” is

technically consistent with a belief in B. Thus, the shared KB can

remain consistent.

For problem-solving purposes, application-dependent choices

between contradictory beliefs often have to be made. To make

them, an application designer can exploit i) the statements de-

scribing or evaluating the creators of the beliefs, ii) the correc-

tive/argumentation and specialization relations between the be-

liefs, and more generally, iii) their evaluations via meta-statements

(see Point 7). For example, an application designer may choose to

select only the most specialized or restricted beliefs of knowledge

providers having worked for more than 10 years in a certain

domain. Thus, this approach is unrelated to defeasible logics:

it does not solve the problems of performing problem-solving-

like inferencing with imprecise knowledge and thus contradictory

statements but it leads to more precise knowledge and permits

to delay the choices between contradictory beliefs until they can

be made, that is, in the context of applications (meanwhile, as

in WebKB-2, graph-matching based mechanisms can be used to

perform semantic search and checks without being affected by

contradictions between beliefs from different sources).

The approach also avoids the problems associated with classic

“version management” (furthermore, as above explained, in a

cbwoKB, formal objects do not have to evolve in time).

This approach assumes that all beliefs can be argued against

and hence be “corrected”. This is true only in a certain

sense. Indeed, among beliefs, one can distinguish “observa-

tions”, “interpretations” (“deductions” or “assumptions”; in this

54

approach, axioms are considered to be definitions) and “pre-

ferences”; although all these kinds of beliefs can be false

(their authors can lie, make a mistake or assume a wrong

fact), most people would be reluctant to argue against self-

referencing beliefs such as u2#"u2 likes flowers" and

u2#"u2 is writing this sentence". Instead of trying to

formalize this into exceptions, the editing protocols of WebKB-

2 rely on the reluctance of people to argue against such beliefs

that should not be argued against.

7. To support more knowledge filtering or decision making pos-

sibilities and lead the users to be careful and precise in their

contributions, a cbwoKB server should propose “default mea-

sures” deriving a global evaluation of each statement/creator from

i) users’ individual evaluations of these objects, and ii) global

evaluations of these users. These measures should not be hard-

coded but explicitly represented (and hence be executable) to

let each user adapt them – i.e., combine their basic functions –

according to his goals or preferences. Indeed, only the user knows

the criteria (e.g., originality, popularity, acceptance, ..., number of

arguments without objections on them) and weighting schemes

that suit him. Then, since the results of these evaluations are also

statements, they can be exploited by queries on the objects and/or

their creators. Furthermore, before browsing or querying the cb-

woKB, a user should be given the opportunity to set “filters for

certain objects not to be displayed (or be displayed only in small

fonts)”. These filters may set conditions on statements about these

objects or on the creators of these objects. They are automatically

executed queries over the results of queries. In WebKB-2, filtering

is based on a search for extended specialization, as for conceptual

querying. Filters are useful when the user is overwhelmed by

information in an insufficiently organized part of the KB. The KB

server Co4 [7] had protocols based on peer-reviewing for finding

consensual knowledge; the result was a hierarchy of KBs, the

uppermost ones containing the most consensual knowledge while

the lowermost ones were the private KBs of contributing users.

Establishing “how consensual a belief is” is more flexible in a

cbwoKB: i) each user can design his own global measure for what

it means to be consensual, and ii) KBs of consensual knowledge

need not be generated.

The approach described in the above points is incremental and

works on semi-formal KBs. Indeed, the users can set corrective

or specialization relations between objects even when WebKB-2

cannot detect an inconsistency or redundancy. As noted, a new in-

formal statement must be connected via an argumentation relation

(e.g., a corrective relation) or an extended specialization relation

to an already stored statement. For this relation to be correct, this

new statement should generally not be composed of several sub-

statements. However, allowing the storing of (small) paragraphs

within a statement eases the incremental transformation of informal

knowledge into (semi-)formal knowledge and allows doing so only

when needed. This is necessary for the general acceptance of the

approach. The techniques described in this article work do not seem

particularly difficult for information technology amateurs, since the

minimum they require is for the users to set the above mentioned re-

lations from/to each term or statement. Hence, these techniques could

be used in semantic wikis to avoid their governance problems cited in

the introduction and other problems caused by their lack of structure.

More generally, the presented approach removes or reduces the file-

based approach problems listed in the previous section, without cre-

ating new problems. Its use would allow merging of (the information

discussed or provided by the members of) many communities with

similar interests, e.g., the numerous different communities working

on the Semantic Web.

The hypothesis of this approach are that i) conflicts can always be

solved by adding more precision (e.g., by making their sources ex-

plicit: different “observations”, “interpretations” or “preferences”),

ii) solving conflicts in a loss-less way most often increases or main-

tain the precision and organization of the KB, and iii) different,

internally consistent, ontologies do not have to be structurally mod-

ified to be integrated (strongly inter-related) into a unique consistent

semantic network. None of the various kinds of integrations or map-

pings of ontologies that I made invalidated these hypothesis.

4 DISTRIBUTION IN A VIRTUAL KB

One cbwoKB server cannot support knowledge sharing for all com-

munities. For scalability purposes, the cbwoKB servers of communi-

ties or persons should be able to interact to act as one global virtual

cbwoKB (gv cbwoKB), without a central brokering system, without

restrictions on the content of each KB, and without necessarily as-

king each server to register to a particular super-community or peer-

to-peer (P2P) network. For several cbwoKB servers to be seen as a

gv cbwoKB, it should not matter which KB a user or agent chooses

to query or update first. Hence, object additions/updates made in one

KB should be replicated into all the other KBs that have a scope

which covers these objects; idem for queries when this is relevant.

Given these specifications, current approaches for collaboration

between KB servers/owners (e.g., [4] [14] which are based on in-

tegrating changes made in other KBs, and [15] which also use a

workflow system) or distributed querying between a few KB servers

(e.g., as described by [12]) are insufficient. Indeed, they are based on

partial descriptions of the content of each KB or on predefined roles

for each KB owner or user, and the redundancies or inconsistencies

between the KBs are not made explicit. This often makes difficult

to find the relevant KBs to search or add in and to integrate query

results.

As in the previous sections, a solution is to let the knowledge

indexation and distribution be made at the object level instead of the

document/KB/community/owner level. The requirement is that for

every term T stored in a cbwoKB server, the KB must either

• have a Web-accessible formal description specifying that it is

committed to be a “nexus” for T, i.e., that i) it stores any statement

S on T (if S is inserted in another KB of this gv cbwoKB, it is also

inserted in this KB), or ii) it associates to T the URLs of cbwoKB

servers permitting to find or store any statement on T, or

• not be a “nexus” for T and hence associate to T either i) the URLs

of all cbwoKB servers that have advertised themselves to be a

nexus for T, or ii) the URL of at least one server that stores these

URLs of nexus servers for T.

Thus, via forwards between servers, all objects using T can be added

or found in all the nexus for T. This requirement refines the 4th rule

of the Linked Data approach [3]: “link things to their related ones

in some other data sets”. Indeed, to obtain a gv cbwoKB, the data

sets must be cbwoKB servers and there must be at least one nexus

for each term. A consequence is that when the scopes of two nexus

overlap, they share common knowledge and there is no implicit re-

dundancies or inconsistencies between them. Thus, the gv cbwoKB

has a unique ontology distributed on the various cbwoKB servers.

The difficult task is, whenever the owners of a new cbwoKB server

want to join a gv cbwoKB, to integrate their ontology into the global

one (they must find some nexus of the gv cbwoKB, only one if it

has a nexus for its top level type). This integration task is at the core

55

of most knowledge sharing/re-use approaches. In this one, it is done

only by the owners of the new cbwoKB; once this is done, regularly

and (semi-)automatically integrating new knowledge from/to other

nexus is much easier since a common ontology is shared. Thus, it

can be envisaged that one initial cbwoKB server be progressively

joined by other ones to form a more and more general gv cbwoKB.

The key point of the approach is the formal commitment to

be a nexus for a term (and hence to be a cbwoKB since direct

searches/additions by people must be allowed). There is currently no

standard vocabulary to specify this, e.g., from the W3C, the Dublin

Core and voiD [10] (a vocabulary for discovering linked datasets). It

is in the interest of a competitive company to advertise that it hosts a

nexus for a certain term, e.g., apartment_for_rent_in_Sydney

for a real estate agent covering the whole of Sydney. If the actual

coverage of a nexus is less than the advertised one, a competitor

may publish this. In a business environment, it is in the interest of

a competitive company to check what its competitors or related com-

panies offer and, if it is legal, integrate their public information in its

cbwoKB. It is also in its interest to refer to the most comprehensive

KBs/nexus of its related companies. To sum up, the approach could

be technically and socially adopted. Since its result is a gv cbwoKB,

it can be seen as a way to combine advantages commonly attributed

to “distributed approaches” and “centralized approaches”.

5 CONCLUSION

This article first aimed to show that a (gv)cbwoKB is technically and

socially possible. To that end, Section 4 presented a protocol permit-

ting, enforcing or encouraging people to incrementally interconnect

their knowledge into a well-organized (formal or semi-formal) KB

without having to discuss and agree on terminology or beliefs. As

noted, it seems that all other knowledge-based cooperation protocols

that currently exists work on the comparison or integration of whole

KBs, not on the comparison and loss-less integration of all their

objects into a same KB. Other required elements for a (gv)cbwoKB

– and for which WebKB-2 implements research results - were also

introduced (Section 5 and Section 6) or simply mentioned: expressive

and normalizing notations, methodological guidance, a large general

ontology, and an initial cbwoKB core for the application domain of

the intended cbwoKB.

Already explored kinds of applications were cited. One currently

explored is the collaborative representation and classification by

Semantic Web experts of “Semantic Web related techniques”. This

means that in the medium term Semantic Web researchers will

be able and invited to represent and compare their techniques in

WebKB-2, instead of just indexing their research via domain related

terms, as was the case in the KA(2) project [2] or with the Semantic

Web Topics Ontology [1]. More generally, the approach proposed

in this article seems interesting for collaboratively-built corporate

memories or catalogues, e-learning, e-government, e-science, e-

research, etc. [11] describes a “Knowledge Web” to which teachers

and researchers could add “isolated ideas” and “single explanations”

at the right place, and suggests that this Knowledge Web could

and should “include the mechanisms for credit assignment, usage

tracking and annotation that the Web lacks” (pp. 4-5). [11] does not

give indications on what such mechanisms could be. The cbwoKB

elements described by this article can be seen as a basis for such

mechanisms.

A second aim of this article (mainly via Section 2) was to show

that – in the long term or when creating a new KB for general

knowledge sharing purposes – using a cbwoKB does/can provide

more possibilities, with on the whole no more costs, than the main-

stream approach [16] [3] where knowledge creation and re-use in-

volves searching, merging and creating (semi-)independent (rela-

tively small) ontologies or semi-formal documents. The problem –

and related debate – is more social than technical: which formalisms

and user-centric methodologies will people accept to learn and use to

gain precision and flexibility at the expense of more initial involve-

ment? The answers depend on the considered kinds of users and time

frames (now or in the long term future). A cbwoKB is much more

likely to be adopted by a small communities of researchers but could

incrementally grow to a larger and larger community. In any case,

research on the two approaches are complementary: i) techniques

of knowledge extraction or merging ease the creation of a cbwoKB,

ii) the results of applying these techniques with a cbwoKB as input

would be better, and iii) these results would be easier to retrieve,

compare, combine and re-use if they were stored in a cbwoKB.

REFERENCES

[1] ISWC 2006. Owl specification of the semantic web topics ontology.
http://lsdis.cs.uga.edu/library/resources/ontologies/swtopics.owl, 2006.

[2] V.R. Benjamins, D. Fensel, A. Gomez-Perez, D. Decker, M. Erdmann,
E. Motta, and M. Musen. Knowledge annotation initiative of the
knowledge acquisition community: (ka)2. KAW 1998, 11th Knowledge
Acquisition for Knowledge Based System Workshop, April 18-23,
1998.

[3] C. Bizer, T. Heath, and T. Berners-Lee, ‘Linked data - the story so far’,
International Journal on Semantic Web and Information Systems, 5 (3),
1–22, (2010).

[4] P. Casanovas, N. Casellas, C. Tempich, D. Vrandecic, and R. Ben-
jamins, ‘Opjk and diligent: ontology modeling in a distributed envi-
ronment’, Artif. Intell. Law, 15 (2), 171–186, (2007).

[5] M. Chein and M.-L. Mugnier, ‘Positive nested conceptual graphs’,
ICCS 1997, LNAI 1257, 95–109, (1997).

[6] R. Djedidi and A. Aufaure, ‘Define hybrid class resolving disjointness
due to subsumption’, Web page, (2010).

[7] J. Euzenat, ‘Corporate memory through cooperative creation of know-
ledge bases and hyper-documents’, KAW 1996, (36)1–18, (1996).

[8] J. Euzenat, O. Mbanefo, and A. Sharma, ‘Sharing resources through on-
tology alignment in a semantic peer-to-peer system’, Cases on semantic

interoperability for information systems integration: practice and ap-

plications, 107–126, (2009).
[9] M.R. Genesereth, ‘Knowledge interchange format’, Draft proposed

American National Standard (dpANS), NCITS.T2/98-004, (1998).
[10] M. Hausenblas, ‘Discovery and usage of linked datasets on the web of

data’, Nodalities Magazine, 4, 16–17, (2008).
[11] W.D. Hillis, ‘Aristotle (the knowledge web)’, Edge Foundation, Inc.,

138, (May 6, 2004).
[12] J. Lee, J. Park, Park M., C. Chung, and J. Min, ‘An intelligent query

processing for distributed ontologies’, Systems and Software, 83 (1),
85–95, (Jan. 2010).

[13] Ph. Martin and M. Eboueya, ‘For the ultimate accessibility and re-
usability’, 589–606, (July 2008).

[14] N.F. Noy and T. Tudorache, ‘Collaborative ontology development on
the (semantic) web’, AAAI Spring Symposium on Semantic Web and

Knowledge Engineering (SWKE), (March 2008).
[15] R. Palma, P. Haase, Y. Wang, and M. d’Aquin. Propagation models and

strategies. Deliverable 1.3.1 of NeOn (Lifecycle Support for Networked
Ontologies; NEON EU-IST-2005-027595), Jan. 2008.

[16] N. Shadbolt, T. Berners-Lee, and W. Hall, ‘The semantic web revisited’,
IEEE Intelligent Systems, 21 (3), 96–101, (May/June 2006).

[17] J. Sowa. Theories, models, reasoning, language, and truth. Web
document http://www.jfsowa.com/logic/theories.htm, Dec. 2005.

56

Knowledge-based Implementation of Metalayers -
The Reasoning-Driven Architecture

Lothar Hotz and Stephanie von Riegen1

Abstract. The Meta Principle, as it is considered in this paper, re-

lays on the observation that some knowledge engineering problems

can be solved by introducing several layers of descriptions. In this pa-

per, a knowledge-based implementation of such layers is presented,

where on each layer a knowledge-based system consisting, as usual,

of a knowledge model and separated inference methods is used for

reasoning about the layer below it. Each layer represents and infers

about knowledge located on a layer below it.

1 Introduction

Typically, knowledge engineering has the goal to create a model of

knowledge of a certain domain like car periphery supervision [33],

drive systems [29], or scene interpretation [16]. For knowledge-based

tasks, like constructing or diagnosing a specific car periphery sys-

tem, a strict separation is made into domain model which covers

the knowledge of a certain domain and a system model which cov-

ers the knowledge of a concrete system or product of the domain.

The domain model and the system models are represented with a

knowledge-modeling language which again is interpreted, because

of a defined semantic, through a knowledge-based system. Examples

are a terminology box (TBox) as a domain model representing e.g.

knowledge about an animal domain; and an assertional box (ABox)

as a system model representing e.g. a specific animal. The TBox and

ABox are represented with a certain Description Logic [5] which is

again interpreted through a Description Logic reasoner like PELLET

or RACER. In this paper, we use configuration systems (configura-

tors) as knowledge-based systems. In such systems, a domain model

(also called configuration model) is used for constructing a system

model (also called configuration). Configurators typically combine

a broad range of inference mechanisms like constraint solving, rule-

based inference, taxonomical reasoning, and search mechanisms.

The domain model and the system model constitute two layers:

In the domain model all knowledge about possible systems is ex-

pressed, in the system model all knowledge about one real system

is expressed. Often, these two layers are sufficient for expressing the

knowledge needed for a certain knowledge-based task. However, in

some domains more layers may be needed for adequately represent-

ing the domain knowledge.

We take the biological classification as an example for multiple

layers. In [32], a detailed discussion of alternative modeling for bi-

ological classification is supplied. Figure 1 presents an extract of

the traditional biological classification of organisms established by

Carolus Linnaeus. Each biological rank joins organisms according to

shared physical and genetic characteristics. We conceive of a rank as

1 HITeC e.V. c/o Fachbereich Informatik, Universität Hamburg, Germany,
email: {hotz,svriegen}@informatik.uni-hamburg.de

knowledge about the next layer. The main ranks are kingdom, phy-

lum, class, order, genus, species, and breed, which again are divided

into categories. Each category unifies organisms with certain char-

acteristics. For instance, the Mammal class includes organisms with

glands only, thus a downward specialisation from Mammal to its sub-

categories is depicted in Figure 1. For clarity reasons, only extracts of

ranks and categories are given, for example the rank of kingdom con-

tains more than the category animal, among others plants, bacteria,

and fungi. The ranks are representing an additional layer (BioClM)

above the domain model of the biological classification. The cat-

egories of the ranks form the domain model layer (BioClD) and

each of them is an instance of the correspondent rank. The system

model layer (BioClS) is covering specific individuals (also called

domain objects), e.g. Tux the penguin. By the given classification, the

need for multiple layers becomes directly evident: It is understand-

able that a King Penguin is an instance of Breed. But it would

be improper to denote Tux as a Breed, which would hold if King

Penguin would be a specialization of Breed.

Kingdom

Biological

Rank

Mammal

Carnivora

Felidae

Felis

Domestic

Cat

Europ.

Shorthair

Chordate

Animal

King

Penguin

Aptenodytes

patagonicus

Penguin

Aves

Great

Penguin

Black

Pete
Tux

Phylum

Class

Order

Genus

Species

Breed

Echinoderms

Asteroidea

Forcipulatida

Asterias

Asteriidae

Common

Sea Star
Patrick

BioCl
D

BioCl
S

Instance-of
Is-a

has

BioCl
M

BioCl
MM

Figure 1. Biological Classification represented with several layers. Figure
inspired by [4].

Because each layer specifies knowledge about knowledge in the

layer below it, we also speak of a metalayer approach or of meta-

knowledge because as [28] pointed out: “Metaknowledge is knowl-

edge about knowledge, rather than knowledge from a specific domain

such as mathematics, medicine or geology.” From a knowledge engi-

neering viewpoint, metaknowledge is being created at the same time

57

as knowledge [27]. For supporting metaknowledge, representation

facilities are needed that allow the adequate representation of these

types of knowledge, in here called metaknowledge models. A strict

separation of these knowledge types from each other and the encap-

sulation of metalayer facilities are further requirements for a meta-

layer approach [6]. Furthermore, for facilitating the use and mainte-

nance of the layers, if possible, each layer should be realized with the

same modeling facilities. For being able to reason about the models

on a metalayer and not only to specify them, a declarative language

with a logic-based semantic should be used for implementing each

layer. For allowing domain specific models on the layers, each layer

should be extensible.

In this paper, we propose a Reasoning-Driven Architecture, RDA

(rooted at the Model-Driven Architecture, MDA, see [23] and Sec-

tion 2). The RDA consists of an arbitrary number of layers. Each

layer consists of a model and a knowledge-based system. Both rep-

resent the facilities used for reason about the next lower layer.

For this task, we consider the Component Description Language

(CDL) as a knowledge-modeling language which was developed for

representing configuration knowledge [15]. CDL combines ontology

reasoning similar to the Web Ontology Language (OWL) [2] with

constraint reasoning [30], and rules [13] (see Section 3). Because

knowledge-based configuration can be seen as model construction

[8, 16, 15], these technology provides a natural starting point for

implementing the modeling layers of RDA. Typically, a configura-

tion model (located at the domain model layer) generically represents

concrete configurations which themselves are located on the system

model layer. The crucial point of RDA is to provide each layer with

a model that represents knowledge about the next lower layer (see

Section 4) and uses a knowledge-based configuration system to infer

about this layer (see Section 5). By introducing a configuration sys-

tem on each layer of the RDA, we enable reasoning tasks like con-

sistency check, model construction and enhancement on each layer,

i.e. also on metalayers.

An application of such an RDA is naturally to support the knowl-

edge acquisition process needed for knowledge-based systems. In

a first phase of a knowledge acquisition process, the typically tacit

knowledge about a domain is extracted by applying knowledge elic-

itation methods and high interaction between a knowledge engineer

and the domain expert (knowledge elicitation phase). A model sketch

is the result, which in turn is formalized during the domain repre-

sentation phase. During this phase a domain model is created. The

domain model has to be expressed with the facilities of a knowledge-

modeling language. The RDA can e.g. be used to check such knowl-

edge models for being consistent with the knowledge-modeling lan-

guage.

2 Reasoning-Driven Architecture

For defining the Reasoning-Driven Architecture (RDA), we borrow

the notion of layers from the Model-Driven Architecture [24, 22, 12,

25]. In MDA, the main task is to specify modeling facilities that

can be used for defining models (metamodeling), see for example

[25]: “A metamodel is a model that defines the language for express-

ing a model”. Or compiled to terms used here: “A metaknowledge

model (called Meta-CDL-KB, see below and Section 3) is a knowl-

edge model that defines CDL, which in turn is used for expressing a

domain model”. MDA provides four layers for modeling (see Figure

2, MDA view): M2 is the language layer, which is realized by (or is

a (linguistic, s.b.) instance-of) a metamodel located on the M3 layer.

The language is used for creating a model of a specific system on the

M1 layer. The system model represents a system which is located in

the reality (M0 layer; not shown in the figure for brevity) [9]. Please

note, that each layer contains elements which are instances of classes

of the layer above. Typically a specific implementation in a tool en-

sures that a system model on M1 conforms to a model on M2 and a

model on M2 conforms to a metamodel on M3.

For clarifying our approach, we will use R1, R2, R3 for RDA

which roughly correspond to M1, M2, M3 in MDA, respectively.

Ri stands for “Reasoning Layer i”. We separate R1 in several reason-

ing layers, because for knowledge-based systems one single model

on this layer is not sufficient. This is due to the above mentioned sep-

aration of domain model and system model. R1 consists of a domain

model specified with concepts and constraints of CDL (denoted by

R1C) and knowledge instances (denoted R1I) representing the sys-

tem model. Furthermore, corresponding reasoning facilities of CDL

allow to reason about entities on layer R1 (see Figure 2, CDL view).

The RDA itself consists of multiple copies of the CDL view for

representing and reason about distinct types of metaknowledge on

different layers. These layers are denoted with R1Mi (i ≥ 0), R1D ,

R1S for an arbitrary number of metamodel layers, one domain model

layer, and one system model layer, respectively. Because each of

these layers are realized with same knowledge-based facilities, i.e.

CDL concepts and instances, we do not extend CDL with the notion

of a metaclass, which has instances that act as classes and can again

have instances (e.g. like OWL Full [2] or like MDA/UML imple-

mentations with stereotypes [4]). Thus, the layers of R1 are not in

one system but are clearly separated into several systems, here called

Knowledge Reflection Servers. Each server is realized with the typi-

cal concept/instance scheme. Hence, each server can be realized with

a typical knowledge-based system like Description Logic systems,

rule-based systems, or as in our case a configuration system based

on CDL. Through a mapping between those servers, concepts on one

layer are identified with instances of the next higher layer. This map-

ping is a one-to-one mapping and based on a metaknowledge model

(see Figure 2, RDA view and Section 4).

Following [4], we distinguish between a linguistic and an ontolog-

ical instance-of relation. However, we explicitly name the internal

implementation instance-of relation as such, which is a simple UML

type-instance relation in [4]. The implementation instance-of relation

is provided through the instantiation protocol of the underlying im-

plementation language Common Lisp and its Common Lisp Object

System (CLOS) [20, 21] (see Figure 2, classes are instances of the

predefined metaclass standard-class). The linguistic instance-of

relation is originated in the notion of classes and objects known from

programming languages. In case of CDL, this relation is realized

with the macroexpansion facilities of Common Lisp. Beside oth-

ers, Figure 2 depicts concept definitions (define-concept) of CDL

and their linguistic instance-of expansion to defclass of CLOS.

The ontological instance-of relation represents relationships between

knowledge elements, in CDL between concepts and instances (see

above).

As we will see in Section 3, the main feature of CDL is given by

the use of its inference techniques like constraint propagation. By

representing the knowledge of a domain with modeling facilities of

CDL these inference techniques can be applied for model construc-

tion. This representation is basically a generic description of domain

objects of a domain at hand, i.e. CDL is used for specifying a do-

main model. For the representation of concrete domain objects, this

description is instantiated and a system model is constructed. The

created instances are related to each other through relations. Further-

more, instances can be checked for concept membership.

58

I i
n

st
an

ce
-o

f
C

C
I

o
n

e-
to

-o
n

e
m

ap
p

in
g

M
e
ta

la
y
e
r

M
3

L
a

n
g

u
a

g
e

 l
a

y
e
r

M
2

S
y
s

te
m

 m
o

d
e

l
la

y
e
r

M
1

M
e

ta
m

o
d

e
l

L
a
n
g
u
a
g
e

M
o

d
e

l
in

 t
h

e
 l
a

n
g

u
a

g
e

M
D

A
 v

ie
w

:

li
n

g
u

is
ti

c

in

s
ta

n
c

e
-o

f
li

n
g

u
is

ti
c

in

s
ta

n
c

e
-o

f

M
o

d
e

l
o

f
a

d
o

m
a

in

C
D

L
 v

ie
w

:

C
D

L
t

l
l

C
L

O
S

in
te

rn
a

ls
D

o
m

a
in

m
o

d
e

l
la

y
e

r
li

n
g

u
is

ti
c

in

s
ta

n
c

e
-o

f
i

f
C
D
L

li
n

g
u

is
ti

c

in

s
ta

n
c

e
-o

f
i

f
C
L
O
S

K
n

o
w

le
d

g
e

 m
o

d
e

li
n

g

la
n

g
u

a
g

e
 l

a
y
e
r

R
2

K
n

o
w

le
d

g
e

 m
o

d
e

l
la

y
e
r

R
1

K
n

o
w

le
d

g
e

 i
m

p
le

m
e

n
ta

ti
o

n
la

y
e
r

R
3

M
o

d
e

l
o
f
a

d
o

m
a

in
re

a
liz

e
d

 b
y
 k

n
o

w
le

d
g

e
 e

n
g

in
e

e
r

(
d
e
f
i
n
e
-
c
o
n
c
e
p
t

A
v
e
s

.
.
.
)

S
y
s
te

m
m

o
d

e
l

C
D

L
 c

o
n

c
e

p
t

le
v
e
l

(
d
e
f
c
l
a
s
s

A
v
e
s
.
.
.
)

C
L

O
S

in
te

rn
a

ls
(
m
a
k
e
-
i
n
s
t
a
n
c
e

‘
s
t
a
n
d
a
r
d
-
c
l
a
s
s

:
n
a
m
e

‘
A
v
e
s
.
.
.
)

D
o

m
a

in
m

o
d

e
l

la
y
e
r

R
1

C
D

S
y
s

te
m

 m
o

d
e

l
la

y
e
r

o
n

to
lo

g
ic

a
l

in
s

ta
n

c
e

-o
f

re
a

li
z
e

d
 b

y
 a

c
o

n
fi

g
u

ra
to

r

m
a
c
r
o
e
x
p
a
n
s
i
o
n

o
f

C
D
L

m
a
c
r
o
e
x
p
a
n
s
i
o
n

o
f

C
L
O
S

C
D

L
in

s
ta

n
c
e

le
v
e

l

im
p

le
m

e
n

ta
ti

o
n

in
s

ta
n

c
e

-o
f

li
n

g
u

is
ti

c

in

s
ta

n
c

e
-o

f
m
a
c
r
o
e
x
p
a
n
s
i
o
n

o
f

C
D
L

R
D

A
 v

ie
w

:

K
n

o
w

le
d

g
e

 m
o

d
e

li
n

g

la
n

g
u

a
g

e
 l

a
y
e
r

R
2

K
n

o
w

le
d

g
e

 m
o

d
e

l
la

y
e
r

R
1

K
n

o
w

le
d

g
e

 i
m

p
le

m
e

n
ta

ti
o

n
la

y
e
r

R
3

S
y
s
te

m
m

o
d

e
l

(
m
a
k
e
-
i
n
d
i
v
i
d
u
a
l

A
v
e
s

.
.
.
)

y
y

R
1

IS
C

D
L

in
s
ta

n
c
e

le
v
e
l

(
m
a
k
e
-
i
n
s
t
a
n
c
e

‘
A
v
e
s

.
.
.
)

p

R
2

M
e

ta
-C

D
L

-K
B

,
B

io
C

lM
M

(
d
e
f
i
n
e
-
c
o
n
c
e
p
t

c
o
n
c
e
p
t
-
m

.
.
.

(
d
e
f
i
n
e
-
c
o
n
c
e
p
t

b
i
o
l
o
g
i
c
a
l
-
r
a
n
k
-
m
m

C
D

L
 c

o
n

c
e

p
t

le
v
e
l

C
L

O
S

 i
n

te
rn

a
ls

M
e
ta

m
e
ta

m
o

d
e
l

la
y
e
r

R
1

C
M

M

o
n

to
lo

g
ic

a
l

in
s

ta
n

c
e

-o
f

l i
n

g
u

is
ti

c

in

s
ta

n
c

e
-o

f
li

n
g

u
is

ti
c

in

s
ta

n
c

e
-o

f

im
p

le
m

e
n

ta
ti

o
n

in
s

ta
n

c
e

-o
f

M
e

ta
-C

D
L

-K
B

,
B

io
C

lM
(
d
f
i

t
t

C
D

L
c
o

n
c
e

p
t

le
v
e
l

C
L

O
S

in
te

rn
a

ls
M

e
ta

m
o

d
e

l
la

y
e
r

li
n

g
u

is
ti

c

in

s
ta

n
c

e
-o

f
li

n
g

u
is

ti
c

in

s
ta

n
c

e
-o

f

B
io

C
lM

M

(
m
a
k
e
-
i
n
d
i
v
i
d
u
a
l

b
i
o
l
o
g
i
c
a
l
-
r
a
n
k
-
m
m

:
n
a
m
e

C
l
a
s
s
-
m

.
.
.

M
e

ta
m

o
d

e
l

la
y
e
r

a
s
 i
n

s
ta

n
c
e
s

R
1

IM
M

C
D

L
 i
n

s
ta

n
c
e

 l
e

v
e
l

li
n

g
u

is
ti

c

in

s
ta

n
c

e
-o

f

(
d
e
f
i
n
e
-
c
o
n
c
e
p
t

c
o
n
c
e
p
t
-
m

(
d
e
f
i
n
e
-
c
o
n
c
e
p
t

C
l
a
s
s
-
m

.
.
.

B
io

C
lD

(
m
a
k
e
-
i
n
d
i
v
i
d
u
a
l

C
l
a
s
s
-
m

C
D

L
c
o

n
c
e

p
t

le
v
e
l

C
L

O
S

in
te

rn
a

ls
y

a
s
 c

o
n

c
e
p

ts
R

1
C

M

D
o

m
a

in
 m

o
d

e
l

la
y
e
r

a
s
 i

n
s
ta

n
c
e
s

o
n

to
lo

g
ic

a
l

in
s

ta
n

c
e

-o
f

g

C
D

L
 i
n

s
ta

n
c
e

 l
e

v
e
l

im
p

le
m

e
n

ta
ti

o
n

in
s

ta
n

c
e

-o
f

li
n

g
u

is
ti

c

in

s
ta

n
c

e
-o

f

B
io

C
lD

(
d
e
f
i
n
e
-
c
o
n
c
e
p
t

A
v
e
s

.
.
.

C
D

L
 c

o
n

c
e

p
t

le
v
e
l

C
L

O
S

 i
n

te
rn

a
ls

D
o

m
a

in
 m

o
d

e
l

la
y
e
r

a
s
 c

o
n

c
e
p

ts
R

1
C

D

o
n

to
lo

g
ic

a
l

in
s

ta
n

c
e

o
f

li
n

g
u

is
ti

c

in

s
ta

n
c

e
-o

f
li

n
g

u
is

ti
c

in

s
ta

n
c

e
-o

f

im
p

le
m

e
n

ta
ti

o
n

in
s

ta
n

c
e

o
f

:
n
a
m
e

A
v
e
s

.
.
.

R
1

IM

B
io

C
lS

(
m
a
k
e
-
i
n
d
i
v
i
d
u
a
l

A
v
e
s

.
.
.
)

S
y
s

te
m

 m
o

d
e

l
la

y
e
r

R
1

IS

in
s

ta
n

c
e
-o

f

C
D

L
 i
n

s
ta

n
c
e

 l
e

v
e
l

in
s

ta
n

c
e
-o

f

li
n

g
u

is
ti

c

in

s
ta

n
c

e
-o

f

Figure 2. Comparing MDA, CDL, and RDA. The MDA view is refined when applying CDL with its domain and system model on R1 (R1C , R1I). The
CDL view is three times copied for using RDA for the biological classification domain.

A configuration system supports mainly three tasks (see Figure 2,

CDL view):

1. It enables the expression of a configuration model that is con-

sistent with the configuration language, which the system imple-

ments. For this task, the configuration system performs consis-

tency checks of given configuration models (or parts of it) with

the language specification. As a result, the configuration model is

conform to the configuration language. However, the creation of

the configuration model is done manually during knowledge ac-

quisition.

2. On the basis of the configuration model, the configuration system

supports the creation of configurations (system models) that are

consistent with the configuration model. For this task, the system

interprets the logical expressions of the configuration model and

creates configurations according to these definitions. As a result,

59

the configurations are conform to the configuration model.

3. The configuration model can be defined in textual form or sup-

ported by a graphical user interface that enables the creation of

concepts and constraints. Thus, the configuration system supplies

a user interface for expressing the configuration model and for

guiding the configuration process.

Thus, a configuration system supplies means for supporting the

step from a domain model (R1D
C) to a system model (R1S

I) (see Fig-

ure 2, CDL view) and it can check configuration models represented

with the configuration language of the system for being compliant

with the language. However, the development of the configuration

model is not supported with general inference techniques but is sys-

tem dependent.

In RDA, this instantiation facility is used for supporting the step

from the configuration language to the domain model. By apply-

ing the configuration system to a domain model that contains every

model of a language, i.e. by applying it to a metaknowledge model

(the Meta-CDL-KB), the configuration of a domain model for any

specific domain is supported (Figure 2, RDA view, R1M
C). This is

achieved because of the general applicability of the language con-

structs of CDL, which are based on logic (see Section 3). Further-

more, other advantages of configuration systems, like a declarative

representation of the configuration model, or the use of inference

techniques can be applied to the Meta-CDL-KB. Thus, the construc-

tion of metamodel-compliant domain models is supported with this

approach. However, the question arises: How can CDL be repre-

sented with CDL? (see Section 4.1).

3 Comprehensive Knowledge Representation

This section is organized as follows. First a brief overview of the

knowledge representation language CDL (Component Description

Language) [15] will be given in Section 3.1. Section 3.2 presents

parts of the metamodel of CDL which have to be modeled on R1M .

CDL will be used in the following sections to realize the envisioned

metalevels through knowledge-based implementations.

3.1 A Sketch of CDL

The CDL mainly consists of two modeling facilities: a concept hier-

archy and constraints. Models consisting of concepts and constraints

belong to R1D , for the biological classification domain this layer is

named BioClD (see Figure 1).

The Concept Hierarchy contains concepts, which represent do-

main objects, a specialization hierarchy (based on the is-a relation),

and structural relations. Concepts gather all properties, a certain set

of domain objects has, under a unique name. A specialization rela-

tion relates a super-concept to a sub-concept, where the later inherits

the properties of the first. The structural relation is given between a

concept c and several other concepts r, which are called relative con-

cepts. With structural relations a compositional hierarchy based on

the has-parts relation can be modeled as well as other structural re-

lationships. For example, the structural relation has-differences

connects a species with its differentiating characteristics which is not

a decomposition, to be precise. Parameters specify the attributes of

a domain object with value intervals, values sets (enumerations), or

constant values. Parameters and structural relations of a concept are

also referred to as properties of the concept. Instances are instan-

tiations of concepts and represent concrete domain objects. When

instantiated, the properties of an instance are initialized by the values

or value ranges specified in the concept. Figure 3 gives examples for

concept definitions. The structural relation has-differences is de-

fined, which relates one biological class with several characteristics

and one characteristic with several classes. The concept for a biolog-

ical class (Mammal) is defined with such a relation including number

restricted structural relations. The right side of the operator :> con-

sists of the super-concept of all relative concepts and the minimal

and maximal number of those concepts. The left side restricts the to-

tal number of instances in the relation. The characteristics Hair and

Fur are optional and only one of them can be used for describing a

mammal, because exactly 6 characteristics are needed for specifying

a mammal. Except of the metaconcept specification typical ontolog-

ical definitions are given.

Constraints summarize conceptual constraints, constraint rela-

tions, and constraint instances. Conceptual constraints consists of

a condition and an action part. The condition part specifies a struc-

tural situation of instantiated concepts. If this structural situation is

fulfilled by some instances (i.e. the instances match the structural sit-

uation), the constraint relations that are formulated in the action part

are instantiated to constraint instances.

Constraint relations can represent restrictions between properties

like all-different-p or ensure-relation. The constraint re-

lation ensure-relation establishes a relation of a given name

between two instances. It is used for constructing structural rela-

tions and thus provides main facilities for creating resulting con-

structions. Before establishing a relation between given instances,

ensure-relation checks whether the relation already exists. The

constraint relation all-different-p ensures that all objects in a

given set are of a different type. Please note, that such kind of con-

straints extend typical constraint technology, which is based on prim-

itive datatypes like numbers or strings [19].

Constraints are multi-directional, i.e. they are propagated regard-

less of the order in which constraint variables are instantiated or

changed. At any given time, the remaining possible values of a con-

straint variable are given as structural relations, intervals, value sets

or constant values.

Constraint relations are used in the action part of conceptual con-

straints. Figure 6(c) gives also an example of such a conceptual con-

straint in CDL, however, already on a metalayer. It shows, how in-

stances, which are selected through the structural situation, can be

checked for being of a different type. When this check is fulfilled

this constraint would be consistent otherwise inconsistent.

A configuration system performs knowledge processing on the ba-

sis of logical mappings like they are given in [31] for a predeces-

sor of CDL. Thus, the configuration system applies inference tech-

niques such as taxonomical reasoning, value-related computations

like interval arithmetic [18], establishing structural relations, and

constraint propagation. The structural relation is the main mecha-

nism that causes instantiations and thus leads to an extended config-

uration: If such a relation is given between a concept c and several

relative concepts r, depending on what exists first as instances in the

configuration (c or one or more of the relative concepts r), instances

for the other part of the relation may be created and the configuration

increases. This capability together with the fact that descriptions, i.e.

models, of systems are constructed lead to the use of configuration

systems for constructing models. For a detailed description of CDL

and its use in a configuration system, we refer to [15].

60

(define-concept :name Characteristic

:specialization-of domain-root

:metaconcept Characteristic-m)

(define-concept :name Glands

:specialization-of Characteristic

(define-relation :name has-differences

:inverse differentiate

:domain Class-m

:range Characteristics

:mapping m-n)

a) b)

:specialization-of Characteristic

:metaconcept Characteristic-m)

(define-concept :name Hair

:specialization-of Characteristic

:metaconcept Characteristic-m)

(define-concept :name Fur

(define-concept :name Animal

:specialization-of domain-root

:metaconcept Kingdom-m)

(define-concept :name Chordate

:specialization-of Animal

:metaconcept Phylum-m) (define-concept :name Fur

:specialization-of Characteristic

:metaconcept Characteristic-m)

(define-concept :name MiddleEarBones

:specialization-of Characteristic

:metaconcept Characteristic-m)

:metaconcept Phylum-m)

(define-concept :name Mammal

:specialization-of Chordate

:has-differences

((:type Characteristic :min 6 :max 6)

:>

(:type Glands :min 1 :max 1)

(define-concept :name WarmBlooded

:specialization-of Characteristic

:metaconcept Characteristic-m)

(:type Glands :min 1 :max 1)

(:type Hair :min 0 :max 1)

(:type Fur :min 0 :max 1)

(:type MiddleEarBones :min 3 :max 3)

(:type WarmBlooded :min 1 :max 1))

:metaconcept Class-m)

Figure 3. Example of CDL concept definitions from the domain of biological classification.

3.2 Parts of the Metamodel of CDL

Languages are typically defined by describing their abstract syntax,

their concrete syntax, and consistency rules. For describing CDL’s

abstract syntax, we introduce three metalevel facilities: a knowledge

element, a taxonomical relation between knowledge elements, and a

compositional relation between knowledge elements. These facilities

are not to be mixed up with the above mentioned CDL facilities: con-

cepts, specialization relations, and structural relations. The abstract

syntax for concepts and conceptual constraints of CDL is given in

Figure 5. A concrete syntax for CDL is given in Figure 3 for exam-

ple.

A CDL concept is represented with a knowledge element of name

concept (see Figure 4 (a)), and a CDL structural relation is repre-

sented with the knowledge element relation-descriptor. The fact

that CDL concepts can have several structural relations is represented

with a compositional relation with name has-relations. Parameters

are represented similarly.

Structural relations are defined in a further part of the metamodel

(see Figure 4(b)). The fact that a concept is related by a structural re-

lation of other concepts (the relative concepts) is represented with

three knowledge elements and three compositional relations in a

cyclic manner.

Figure 4(c) provides the metamodel for a conceptual constraint

with its structural situation and action part. A structural situation con-

sists of a concept expression which in turn consists of a variable and

a conditioned concept. The action part consists of a number of con-

straint relations that should hold if the structural situation is fulfilled.

Several consistency rules define the meaning of the syntactic con-

structs. For example, one rule for the structural relation defines that

the types of the relative concepts of a structural relation have to

be sub-concepts of the concept on the left side of the operator :>

(rule-5). Additionally, consistency rules are given that check CDL

instances, e.g. one rule defines when instances match a conceptual

constraint (rule-6). All rules are given in [15].

4 Metamodels

In this section, the metamodels needed for R1M and R1MM (Sec-

tion 4.1 and [14]) and their extensions for modeling the biological

classification domain (Section 4.2) are presented.

4.1 CDL in CDL

As discussed in Section 2, R1M and R1MM will be realized with

CDL. Thus, the goal is to define the metamodel of CDL (as sketched

in Section 3.2) using CDL itself. In fact, CDL provides all knowl-

edge representation facilities needed for this purpose. The result of

this is a metaconfiguration model called Meta-CDL knowledge base

(Meta-CDL-KB). In Section 3.2, parts of the metamodel of CDL are

defined using three modeling facilities, namely knowledge elements,

taxonomical relation, and compositional relation. These modeling

facilities are mapped to the CDL constructs concept, specialization

relation, and structural relation respectively. Figure 5 shows how

the knowledge elements shown in Figure 4 (a) can be represented

with the meta-concepts concept-m, relations-descriptor-m, and

parameter-m. The consistency rules of CDL have to be represented

also. This is achieved by defining appropriate constraints. In Figure

5, a conceptual constraint is represented, which checks the types of a

structural relation.2

Furthermore, instances can be represented on the metalevel by in-

cluding the metaconcept instance-m. Having instances available,

conceptual constraints and their matching instances can be repre-

sented (see Figure 5). The fact that instances fulfill a certain con-

ceptual constraint is represented through establishing appropriate re-

lations using the constraint relation ensure-relation. Please note

that self references can be described also, e.g. a concept-m is related

to itself via the has-superconcept-m relation (compare the loop in

Figure 4 with Figure 5).

Other approaches also use metalevels for defining their language,

e.g. UML [34, 24, 26, 25]. In contrast to these approaches, we use

2 For a complete mapping of the CDL consistency rules to conceptual con-
straints see [15].

61

concept
has-relations has-concept

property

language constructa)
b)

0..n 1..n
structural specificator

minimum

maximum

relation descriptor

name

operator has-spec

p p y

parameter descriptorrelation descriptor concept
1..n

has-superconcept

1..n

has structural situation has calls

conceptual constraint

nameconcept instance

has-parametershas-relations

has-instances0..n

c)

has-structural-situation

structural situation action part

has-calls

1..n
constraint call1..n

concept expression

taxonomical relation

knowledge element name

compositional relation with

name and defaults

1..1 1..1

Legend:

structural variable conditioned concept

a e a d de au ts

Figure 4. Metamodel for a) a concept, b) a structural relation, and c) a conceptual constraint.

(define-concept :name concept-m

:specialization-of named-domain-object-m

:concept-of-dom-m (:type domain-m)

:superconcept-of-m

(define-conceptual-constraint :name consistency-rule-5

:structural-situation

((?c :name concept-m)

(?rd :name relation-descriptor-m:superconcept of m

(:type concept-m :min 0 :max inf)

:in-some-m (:type some-m :min 0 :max inf)

:has-superconcept-m

(:type concept-m :min 0 :max 1)

:has-relations-m

(:type relation-descriptor-m :min 0 :max inf)

:has-parameters-m

(?rd :name relation descriptor m

:relation-of-m ?c)

(?svt :name some-m

:in-relation-left-m ?rd)

(?stdi :all :name some-m

:in-relation-right-m ?rd))

:constraint-calls

((all-isp ?stdi ?svt)))p

(:type parameter-m :min 0 :max inf)

:has-instances-m

(:type instance-m :min 0 :max inf))

(define-concept :name relation-descriptor-m

:specialization-of named-domain-object-m

:relation-of-m (:type concept-m)

((p)))

(define-concept :name conceptual-constraint-m

:specialization-of named-domain-object-m

:structural-situation

(:type concept-expression-m :min 1 :max inf)

:constraint-calls

(:type constraint-call-m :min 1 :max inf)(yp p)

:has-left-side-m (:type some-m :min 1:max 1)

:has-right-side-m (:type some-m :min 0:max inf)

:has-relation-definition-m

(:type relation-definition-m :min 1:max 1))

(define-concept :name some-m

:specialization-of domain-object-descriptor-m

(yp)

:matching-instances

(:type instance-m :min 0 :max inf))

(define-conceptual-constraint

:name instance-consistency-rule-6

:structural-situation

((?cc :name conceptual-constraint-m)p j p

:parameters ((lower-bound [0 inf])

(upper-bound [0 inf]))

:in-relation-left-m

(:type relation-descriptor-m)

:in-relation-right-m

(:type relation-descriptor-m)

:some-of (:type concept-m))

((p)

(?i :name instance-m

:self (:condition

(instance-matches-cc-p *it* ?cc))))

:constraint-calls

((ensure-relation ?i matching-instance-of ?cc)

(ensure-relation ?cc matching-instancs ?i)))

yp p

(define-concept :name instance-m

:specialization-of named-domain-object-m

:instance-of-dom-m (:type domain-m)

:instance-of-m (:type concept-m)

:matching-instance-of-m

(:type conceptual-constraint-m)yp p

:has-relations-m

(:type relation-descriptor-m :min 0 :max inf)

:has-parameters-m

(:type parameter-m :min 0 :max inf))

Figure 5. Formalizing the knowledge elements shown in Figure 4(a) and some consistency rules with CDL concepts.

62

a knowledge representation language with a logic-based semantic on

the metalevel, i.e. CDL instead of UML derivates like EMOF [24].

Doing so, inference techniques provided by the knowledge represen-

tation language can be used, e.g. constraint propagation. This enables

the realisation of the Knowledge Reflection Server as introduced in

the next section.

4.2 Extension of Meta-CDL-KB for Biological
Classification

Because the metalayers are also realized with a knowledge-modeling

language (here CDL) they can be extended by simply adding concept

and constraint definitions to the metaknowledge base. Thus, the mod-

eling facilities provided by such languages can not only be used for

specifying the languages itself (see Section 4.1) but also for domain-

specific extensions on the metalayers. In Figure 6 the extensions of

R1MM (a) and R1M (b and c) for the biological classification do-

main are sketched, yielding to BioClMM and BioClM respectively.

BioClMM consists simply of one concept which specifies a biolog-

ical rank (Figure 6 (a)). On BioClM , beside the concept definitions

that define the metaconcepts used in BioClD (see Figure 3 and 1),

the conceptual constraint Specific-Characteristics is de-

fined on the metalayer. This conceptual constraint checks every com-

bination of biological classes for having specific characteristics by

comparing their differences models on BioClD . Thus, with this con-

ceptual constraint on BioClM it is specified that a biological class

should have a unique combination of characteristics. With the con-

straint, also classes of different phylums are tested (e.g. chordate and

echinoderms). On BioClD , these kinds of constraints are hard to

define because they are typlically not related to one specific con-

cept but to several. Furthermore, such constraints are usually part

of some modeling guidelines, e.g. for biological classification such

documents state that the definitions of biological classes should be

unique. Thus, by the approach presented here a modeling of model-

ing guidelines on the metalayer is achieved.

5 Knowledge Reflection Servers

Each layer described in Section 2 is realized through a Knowledge

Reflection Server (KRS). Every server monitors the layer below it

and consists of the appropriate model and a configuration system

which interprets the model. This has the advantage of using declar-

ative models at each metalayer as well as the possibility to apply

inference techniques like e.g. constraint programming at the met-

alayer. Each server supplies knowledge-based services that can be

called by a server below it for obtaining a judgement of its own used

models. For example, a KRS monitors the activities during the con-

struction of the domain model BioClD , i.e. during the domain rep-

resentation phase. If e.g. a concept c of the domain is defined with

define-concept on R1D the KRS on R1M is informed (see Fig-

ure 7) for checking its consistency. Furthermore, a KRS

• supplies services like check-knowledge-base, add-conceptual-

constraint,

• creates appropriate instances of metaconcepts of the Meta-CDL-

KB, e.g. concept-m or conceptual-constraint-m,

• uses constraint propagation for checking the consistency rules,

• applies the typical model configuration process for completing the

configuration, e.g. adds mandatory parts,

• checks consistency of created domain specific concepts, e.g. of

BioClD ,

• can supply new concepts for the layer below, which may be com-

puted by machine learning methods,

• monitors the reasoning process, e.g. for evaluating reasoning per-

formance, and thus, makes reasoning explicit,

• can create and use explanations,

• may solve conflicts that occur during the domain representation

phase,

• may apply domain-specific metaknowledge, e.g. “ensuring spe-

cific differentiating characteristics of biological classes” with

metacontraints as shown in Figure 6.

We implemented parts of the KRS services based on the configu-

ration system KONWERK [10], but have not yet finished the exten-

sive evaluation. The Meta-CDL-KB and its extensions were used for

checking versions of knowledge bases for the biological classifica-

tion domain. Thereby, a mapping of concept definitions of BioClD

to instance descriptions of BioClM was realized, i.e. concept defi-

nitions on one layer are instance definitions on the next upper layer.

Furthermore, the concrete syntax for defining concepts in BioClD

was extended, thus, metaproperties can be specified in BioClD .

Both implementation issues as well as interfaces for the server func-

tionality could be realized straight forward because of the flexibility

of the underlying implementation language Common Lisp. However,

the reasoning facilities provided by KONWERK could directly be

used for scrutinizing the layers.

The validation of this approach was shown with the help of the

following three scenarios, which also illustrate the use of the KRS:

• First, metaknowledge modeling can be adequately enabled, to this

no workarounds with specialisations, like in [32] are needed.

• Checking domain dependent constraints: In the event of the intro-

duction of a new biological class in BioClD , the KRS advises

according to the specific characteristics of the constraint (e.g. see

Figure 6 (c)) on BioClM whether it is a biological class or not.

• Checking domain independent consistency rules: Nonrelevant to

the kind of domain the domain independent rules, like the num-

ber restrictions (see Figure 5) will be checked at all times. For

example, when a new kind of mammal will be introduced the de-

fined restrictions, like the number of middle ear bones has to be

conform.

6 Discussion and Related Work

Main properties of the Reasoning-Driven Architecture realized with

the Knowledge Reflection Servers (KRS) as described in the previous

sections are:

• the introduction of a model on one layer that represents the knowl-

edge facilities used on the layer below it (i.e. metaknowledge

models).

• the use of existing knowledge-based systems with their reason-

ing facilities on each layer, especially on metalayers. This enables

reflection about knowledge.

• the mapping of concepts of one layer to instances of the next

higher layer. This approach has the potential of using more

tractable instance related inference methods instead of concept

reasoning.

• the support of declarative knowledge modeling on several meta-

layers. This enables the modeling of knowledge and metaknowl-

edge at the same time. Metaknolwledge is typically specified in

modeling guidelines. Thus, the described approach enables the

modeling of modeling guidelines.

63

(define-concept :name Kingdom-m

:specialization-of concept-m

:metaconcept Biological-Rank-mm)

(define-concept :name Phylum-m

i li ti f Ki d

b)(define-concept :name Difference-descriptor-m

:specialization-of relation-descriptor-m

:relation-of-m (:type Class-m)

:has-left-side-m

(:type Characteristic-some-m :min 1:max 1)

:has-right-side-m:specialization-of Kingdom-m

:metaconcept Biological-Rank-mm)

(define-concept :name Class-m

:specialization-of Phylum-m

:has-relations-m

(:type Difference-descriptor-m :min 1 :max 1)

:metaconcept Biological Rank mm)

:has-right-side-m

(:type Characteristic-some-m :min 0:max inf))

(define-concept :name Characteristic-some-m

:specialization-of some-m

:in-relation-left-m

(:type Difference-descriptor-m)

:in-relation-right-m:metaconcept Biological-Rank-mm) :in-relation-right-m

(:type Difference-descriptor-m)

:some-of (:type Characteristic-m))

(define-concept :name Characteristic-m

:specialization-of concept-m

:has-relations-m

(:type Difference-descriptor-m :min 1 :max 1)

(define-conceptual-constraint

:name Specific-Characteristics

:structural-situation

((?c1 :name Class-m)

c)

(:type Difference descriptor m :min 1 :max 1)

:metaconcept Biological-Rank-mm)

(()

(?c2 :name Class-m

:self #'(not-eq *it* ?c1))

(?r1 :name Difference-descriptor-m

:relation-of-m ?c1)

(?r2 :name Difference-descriptor-m

:relation-of-m ?c2)

(?d1 :all :name Characteristic-some-m

(define-concept :name Biological-Rank-mm

:specialization-of concept-m)

a)

(

:in-relation-right-m ?r1)

(?d2 :all :name Characteristic-some-m

:in-relation-right-m ?r2)

:action-part

((all-different ?d1 ?d2)))

Figure 6. Extending Meta-CDL-KB with concepts and conceptual constraints for the domain of biological classification, i.e. parts of BioClM .

Singular activity e.g.

in [Hotz 09]

Metaknowledge model

Meta!CDL!KB

Domain!specific

metaknowledge extensions

Editor for

BioClMM

Configuration system on R1MM

creates

creates

uses Editor for knowledge model

on R1M, e.g.

Class!m of BioClM

Instantiation of e.g.

Biological!Rank!mm

metaknowledge extensions

BioClMM

BioCl

e.g. Biological!Rank!mm

k l d d l

scrutinizes/

constructs

Metaknowledge model

Meta!CDL!KB

Domain!specific

metaknowledge extensions

BioClM, e.g. Class!m

Configuration system on R1M
uses Editor for knowledge model

on R1DS, e.g.

Mammal of BioClD

Instantiation of

e.g. Class!m

scrutinizes/

constructs

Metaknowledge model

Meta!CDL!KB

C fi ti t R1DS
uses

User!interface of

configurator guiding the

Instantiation of

e.g. King Penguin
Model

Domain!specific model

BioClD, e.g. Mammal

Configuration system on R1DS
g g g

configuration process, e.g.

Tux of BioClS

System model BioClS

constructs

Model

Reasoning system

User interaction

Figure 7. Monitoring the construction of metamodels and domain models through Knowledge Reflection Servers realized with configuration systems. A
server using BioClM scrutinizes BioClD and a server using BioClMM scrutinizes BioClM .

The use of reasoning methods in RDA is achieved by replacing the

Meta Object Facility (MOF) of MDA [23], which is based on UML,

with CDL. Other knowledge-representation languages like the Web

Ontology Language (OWL) [2] could also be considered for being

used on the layers. However, CDL is quite expressive, e.g. also con-

straints can be expressed on each layer. For realizing the KRS, even

more important for us was the possibility to add server technologies

to the knowledge-representation language CDL. However, by replac-

ing the Meta-CDL-KB with a metamodel for OWL (e.g. the Ontol-

ogy Definition Metamodel (ODM) [26]) one could use RDA for scru-

tinizing the construction of domain models written in OWL. How-

ever, with the Meta-CDL-KB a knowledge-based implementation of

64

a metamodel is provided and was used from a knowledge-based sys-

tem (here a configurator). [3] and [11] present also approaches that

include semantics on the metalayer, similar as the Meta-CDL-KB

metamodel does. However, these approaches do not emphasise the

use of reasoning methods on each layer as well as the capability to

define domain-specific extensions on the metalayer. Furthermore, the

RDA presented in this paper allows for an arbitrary number of met-

alayers. By introducing a configurator which allows the definition of

procedural knowledge for controling the used reasoning techniques,

in our approach the realization of metastrategies on the metalayers

can be considered (see also [17]). (See Section 2 for further compar-

ison to MDA and OWL.)

The creation of a metamodel for CDL with the aid of CDL has its

tradition in self-referencing approaches like Lisp-in-Lisp [7] or the

metaobject protocol, which implements CLOS (the Common Lisp

Object System) with CLOS [21]. Such approaches demonstrated

the use of the respective language and provide reflection mecha-

nisms. With our approach such reflection mechanisms are extended

from object-oriented reflection (e.g. about introspection of methods)

to knowledge-based reflection (e.g. about used concepts and con-

straints for modeling a domain). Thus, our approach provides reflec-

tion about knowledge and a way to self-awareness of agents.

A Knowledge Reflection Server is basically an implementation of

a configuration tool on the basis of the Meta-CDL-KB, i.e. of a con-

figuration model. A typical configuration tool is implemented with

a programming language and an object model implemented with it.

During this implementation one has to ensure correct behavior of

model construction and the inference techniques. By using CDL,

this behavior (e.g. the consistency rules) is declaratively modeled,

not procedurally implemented. The bases for this declarative real-

ization are of course the procedural implementation of the inference

techniques, so to speak, as a bootstrapping process. However, our ap-

proach gives indications how to open up the implementation of con-

figuration systems or other knowledge-based systems for allowing

domain-specific extensions and extensions to the inference methods

and the used knowledge-modeling language.

The approach of the Metacognitive Loop presented in [1] con-

siders the use of metalevels for improving learning capabilities and

human-computer dialogs. Similar to our approach, it points out the

need for enhancing agents with capabilities to reason about their cog-

nitive capabilities for gaining self-awareness and a basis for decisions

about what, when, and how to learn. However, our approach stems

more from the ontology and technical use point of view and supports

the idea of using metalevels from that side.

7 Conclusion

This paper presents a technology for using knowledge-based sys-

tems on diverse metalayers. Main ingredients for this task are mod-

els about knowledge (metamodels). Through the use of knowledge-

based systems as they are, a Reasoning-Driven Architecture is pro-

vided. It enables reasoning facilities on each metalayer, opposed

to the Model-Driven Architecture which focusses on transforma-

tions. The Reasoning-Driven Architecture is realized through a hier-

archy of Knowledge Reflection Servers based on configuration sys-

tems. Future work will include meta strategies for conducting rea-

soning methods on the metalayers, a complete implementation of the

servers, and industrial experiments in the field of knowledge engi-

neering.

REFERENCES

[1] Michael L. Anderson and Donald R. Perlis, ‘Logic, Self-awareness and
Self-improvement: the Metacognitive Loop and the Problem of Brittle-
ness’, J. Log. and Comput., 15(1), 21–40, (2005).

[2] Grigoris Antoniou and Frank Van Harmelen, ‘Web Ontology Language:
OWL’, in Handbook on Ontologies in Information Systems, pp. 67–92.
Springer, (2003).

[3] T. Asikainen and T. Männistö, ‘A Metamodelling Approach to Configu-
ration Knowledge Representation’, in Proc. of the Configuration Work-

shop on 22th European Conference on Artificial Intelligence (IJCAI-

2009), Pasadena, California, (2009).
[4] Colin Atkinson and Thomas Kühne, ‘Model-Driven Development: A

Metamodeling Foundation’, IEEE Softw., 20(5), 36–41, (2003).
[5] F Baader, D Calvanese, D McGuinness, D Nardi, and P Patel-

Schneider, The Description Logic Handbook, Cambridge University
Press, 2003.

[6] Gilad Bracha and David Ungar, ‘Mirrors: design principles for meta-
level facilities of object-oriented programming languages’, in OOPSLA

’04: Proceedings of the 19th annual ACM SIGPLAN conference on

Object-oriented programming, systems, languages, and applications,
pp. 331–344, New York, NY, USA, (2004). ACM.

[7] R.A. Brooks, R.P. Gabriel, and L. Steele Jr., ‘Lisp-in-Lisp: High Perfor-
mance and Portability’, in Proc. of Fifth Int. Joint Conf. on AI IJCAI-83,
(1983).

[8] M. Buchheit, R. Klein, and W. Nutt, ‘Constructive Problem Solving: A
Model Construction Approach towards Configuration’, Technical Re-
port TM-95-01, Deutsches Forschungszentrum für Künstliche Intelli-
genz, Saarbrücken, (January 1995).

[9] Dragan Gaŝević, Dragan Djuric, Vladan Devedzic, and Bran Selic,
Model Driven Architecture and Ontology Development, Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[10] A. Günter and L. Hotz, ‘KONWERK - A Domain Independent Config-
uration Tool’, Configuration Papers from the AAAI Workshop, 10–19,
(July 19 1999).

[11] P. Haase, R. Palma, and d’Aquin M., ‘Updated Version of the Net-
worked Ontology Model’, Project Deliverable D1.1.5, Neon Project,
(2009). www.neon-project.org.

[12] W. Hesse, ‘More Matters on (Meta-)Modelling: Remarks on Thomas
Kühne’s ”Matters”’, Journal on Software and Systems Modeling, 5(4),
369–385, (2006).

[13] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet,
Benjamin Grosof, and Mike Dean, ‘SWRL: A Semantic Web Rule
Language Combining OWL and RuleML’, W3c member submission,
World Wide Web Consortium, (2004).

[14] L. Hotz, ‘Construction of Configuration Models’, in Configuration

Workshop, 2009, eds., M. Stumptner and P. Albert, Workshop Proceed-
ings IJCAI, Pasadena, (2009).

[15] L. Hotz, Frame-based Knowledge Representation for Configuration,

Analysis, and Diagnoses of technical Systems (in German), volume 325
of DISKI, Infix, 2009.

[16] L. Hotz and B. Neumann, ‘Scene Interpretation as a Configuration
Task’, Künstliche Intelligenz, 3, 59–65, (2005).

[17] L Hotz, K Wolter, T Krebs, S Deelstra, M Sinnema, J Nijhuis, and
J MacGregor, Configuration in Industrial Product Families - The

ConIPF Methodology, IOS Press, Berlin, 2006.
[18] E. Hyvönen, ‘Constraint Reasoning based on Interval Arithmetic: the

Tolerance Propagation Approach’, Artificial Intelligence, 58, 71–112,
(1992).

[19] U. John, Konfiguration and Rekonfiguration mittels Constraint-

basierter Modellierung, Infix, St. Augustin, 2002. In German.
[20] Sonya E. Keene, Object-Oriented Programming in Common Lisp: A

Programmer’s Guide to CLOS, Addison-Wesley, 1989.
[21] J. Kiczales, D. G. Bobrow, and J. des Rivieres, The Art of the Metaob-

ject Protocol, MIT Press, Cambridge, MA, 1991.
[22] T. Kühne, ‘Matters of (Meta-)Modeling’, Journal on Software and Sys-

tems Modeling, 5(4), 369–385, (2006).
[23] OMG, MDA Guide Version 1.0.1, omg/03-06-01, Object Management

Group, 2003.
[24] OMG, Meta Object Facility Core Specification, version 2.0,

formal/2006-01-01, Object Management Group, 2006.
[25] OMG, Unified Modeling Language: Infrastructure, version 2.1.1,

formal/07-02-06, Object Management Group, 2007.

65

[26] OMG, Ontology Definition Metamodel, Version 1.0, Object Manage-
ment Group, 2009.

[27] Gilbert Paquette, ‘An Ontology and a Software Framework for Compe-
tency Modeling and Management’, Educational Technology & Society,
10(3), 1–21, (2007).

[28] J. Pitrat, ‘Metaconnaissance, avenir de l’Intelligence Artificielle.’,
Technical report, Hermes, Paris, (1991).

[29] K.C. Ranze, T. Scholz, T. Wagner, A. Günter, O. Herzog, O. Holl-
mann, C. Schlieder, and V. Arlt, ‘A Structure-Based Configuration
Tool: Drive Solution Designer DSD’, 14. Conf. Innovative Applications

of AI, (2002).
[30] D. Sabin and E.C. Freuder, ‘Configuration as Composite Constraint

Satisfaction’, in Proceedings of the Artificial Intelligence and Manufac-

turing Research Planning Workshop, pp. 153–161. AAAI Press, (1996).
[31] C. Schröder, R. Möller, and C. Lutz, ‘A Partial Logical Reconstruc-

tion of PLAKON / KONWERK’, in DFKI-Memo D-96-04, Proceed-

ings of the Workshop on Knowledge Representation and Configuration

WRKP’96, ed., F. Baader, (1996).
[32] Stefan Schulz, Holger Stenzhorn, and Martin Boeker, ‘The ontology of

biological taxa’, in ISMB, volume 24, pp. 313–321, (2008).
[33] K. Wolter, T. Krebs, and L. Hotz, Mass Customization - Challenges

and Solutions, chapter Model-based Configuration Support for Soft-
ware Product Families, 43–62, Springer, 2006.

[34] Dong Yang, Ming Dong, and Rui Miao, ‘Development of a Product
Configuration System with an Ontology-Based Approach’, Comput.

Aided Des., 40(8), 863–878, (2008).

66

Abstract.
This paper enumerates some of the most important challenges
which arise in practice when changing a configurator knowledge
base: redesign of the knowledge base, schema evaluation of the data
bases, upgrade of configuration instances which are already in the
field, adaptation of solver, UI, I/O, and test suites. Partially, there
are research theories for some of these challenges, but only few of
them are already available in tools and frameworks. So we do not
provide solutions here, but we want to stimulate a deeper discussion
on knowledge evolution. Moreover, we give a self-contained real-
world example as a proposal for future research.

1 INTRODUCTION

Product configurators have a long history in artificial intelligence
(see [1], [2]) and nowadays various systems based on AI methods
are available: scientific frameworks and tools (like Choco, CHR,
DLV, etc.) as well as commercial programs (like from Camos,
Configit, ILOG, Oracle, SAP, Tacton, etc.). However, many of
those systems do not cope well with a scenario which arises in
practice whenever long-living products are configured: Knowledge
evolution.

Knowledge about the product grows and changes over time, e.g.
new types of product components get available, old ones run out of
production, experiences in production or operation cause tightening
or loosening of assembly restrictions between components' proper-
ties, etc. The corresponding configurator's knowledge base (types,
relations, attributes, constraints) must be adjusted accordingly. This
may also affect existing configuration instances based upon that
knowledge base. The necessary reconfiguration - i.e., in general,
modification of an existing product individual to meet new
requirements - has been subject to only little research work, e.g. by
[3] who suggest explicit rules (conditions and operations) and
invariants for necessary changes of instances. A more recent paper
[4] concentrates on replacing (faulty) components with new or
better ones and poses some research questions still to be answered.

This paper identifies some aspects of knowledge evolution worth
to be researched in detail. As an example we use a fictitious people
counting system for museums. The structure of the problem is
similar to problems we encountered in different real-world domains
of our technical product configurators. At first we describe the
original problem and model it with an object-oriented (UML) and
constraint-based (GCSP) approach. Then we specify some
exemplary changes. This leads to several challenges how to cope
with the implied knowledge evolution: schema evolution, data
upgrade, solver adaptations, adaptations to UI, I/O, and tests.

2 ORIGINAL PROBLEM DESCRIPTION

A people counting system (e.g. for use in museums) consists of
door sensors, counting zones (rooms), and communication units
(see [5] for more details).

A door sensor detects everybody who moves through its door
(directed movement detection). There can be doors without a
sensor.

Any number of rooms may be grouped to a counting zone. Each
zone knows how many persons are in it (counting the information
from the sensors at doors leading outside of the zone). Zones may
overlap or include other zones, i.e. a room may be part of several
zones.

A communication unit can control at most 2 door sensors and at
most 2 zones. If a unit controls a sensor which contributes to a zone
on another unit, then the two units need a direct connection: one is a
partner unit of the other and vice versa. Each unit can have at most
2 partner units. This relation is symmetric but neither transitive nor
reflexive.

PartnerUnits problem: Given a consistent configuration of door
sensors and zones, find a valid assignment of communication units
(with max. 2 partners). We assume that a solution requires only a
minimal number of units: the smallest integer greater or equal to the
half of the maximum of the number of zones and the number of
door sensors. Therefore we treat it as a constraint satisfaction
problem, not as a constraint optimization problem.

Figure 1. Room layout of example 1

Example 1: Rooms 1 to 8 with eleven doors, nine of them
having a door sensor (named D01, D12, D26, D34, etc. by the
rooms which they connect). Eight zones named by the rooms which
they contain: Z1 (white), Z2345678, Z2367, Z2378 (light gray), Z4,
Z45 (dark grey), Z456, Z6 (medium grey).

The relation between zones and door sensors can be represented
as a bi-partite graph (see Figure 2). An instance of a solution using
the minimum of five units is shown in Table 1.

Unit Zones DoorSensors PartnerUnits

U1 Z1 Z2345678 D01 D78 U2 -
U2 Z2367 Z45 D12 D56 U1 U3
U3 Z2378 Z6 D34 D67 U2 U4
U4 Z456 Z4 D26 D36 U3 U5
U5 - - D45 - U4 -

Table 1: A minimal solution of example 1

4

7 5 8 6

3 1 2

Challenges of Knowledge Evolution in Practice

Andreas Falkner and Alois Haselböck

Siemens AG Österreich, Austria, email: {andreas.a.falkner,alois.haselboeck}@siemens.com

67

Z2345678

Z2367

Z2378

Z6

Z456

Z1

Z4

Z45

D56

D67

D36

D26

D12

D01

D78

D34

D45

Figure 2. Relation between zones and door sensors of example 1

2.1 Modeling

A knowledge base mainly consists of the representation of the con-
figuration components and the constraints and rules defining valid
solutions. For many technical domains, the models get complex and
large, so that a high-level modeling language is required. It should
provide for an easy, natural and elegant problem description,
supporting readability, validation and maintainability of the model.

UML class diagrams are a common way to describe the structure
of a system in object-oriented modeling. In combination with OCL
(Object Constraint Language) it is also expressive enough to
describe product configuration [6].

Figure 3. UML diagram of PartnerUnits problem

The UML diagram of Figure 3 shows a class diagram derived
from the description. It does not represent rooms as they are not part
of the concrete problem at hand. For all associations, it contains the
cardinality constraints (minimal/maximal number of connected
elements). The fact that the partnerunits association is derived from
the path over the zone2sensor relation must be expressed with an
OCL constraint:

context ComUnit inv:

myPartnerUnitsSensor =

 sensors.zones.unit->excluding(self)->asSet()

and myPartnerUnitsZone =

 zones.sensors.unit->excluding(self)->asSet()

and myPartnerUnitsSensor->union(myPartnerUnitsZone)

 ->size() <= 2

For each unit, it first computes the sets of different units
reachable via the zones assocation and the sensors association,
respectively. Then, it checks the cardinality of their union.

2.2 Generative Constraint Satisfaction

Constraint satisfaction is widely used to represent and solve
configuration problems. A CSP in the classical sense consists of a
fixed set of variables and their domains, as well as constraints
which restrict the assignment of the variables. A valid solution is an
assignment of all variables with values from their domains where
all constraints are satisfied. Any problem instance of the
PartnerUnits problem could be specified as a static CSP because a
fixed set of necessary variables could be derived. Due to the
principally unbounded number of its components and their
connections, however, we use Generative CSP [7].

A GCSP knowledge base of the PartnerUnits problem is shown
in Figure 4. Class, association, and constraint definitions represent
the UML diagram of Figure 3 in a straight-forward and compact
way.

Figure 4. GCSP formulation of the PartnerUnits problem

The classes (i.e. component types) are Zone, DoorSensor, and
ComUnit. Each class represents a theoretically infinite set of instan-
ces (i.e. components). A class can have attributes, associations and
constraints. Whenever a new instance of a class is created, it gets
instances of its attributes, associations and constraints, too. This is
the object-oriented view of the modeling.

From the constraint-oriented point of view, attributes and asso-
ciations represent the variables. The domain of an attribute variable
is its type, e.g. Boolean, an integer interval, etc. Associations are bi-
directional and induce two association variables, one for each side.
The domain of such an association variable is the set of all instances
of the class specified on the other side of the association. E.g. the
association definition

assoc: Zone.unit(1) - ComUnit.zones(0-2)

represents the connection of zones to units. The two association
variables induced are Zone.unit (the link from a zone to its unit) and

class Zone

class DoorSensor

class ComUnit

assoc: Zone.sensors(1-*) - DoorSensor.zones(1-*)

assoc: Zone.unit(1) - ComUnit.zones(0-2)

assoc: DoorSensor.unit(1) - ComUnit.sensors(0-2)

assoc: ComUnit.partnerunits(0-2) - self

constraint ComUnit.derivedPartners:

 partnerunits = zones.sensors.unit

 + sensors.zones.unit

 - self

class PartnerUnits original

Zone

id: string

DoorSensor

id: string

ComUni t

id: string

partnerunit s

0..2

zones 0..2

unit2zone

unit

1

unit

1 unit2sensor

sensors 0..2

zones

1.. * zone2sensor

sensors

1.. *

68

ComUnit.zones (the link from a unit to all its associated zones).
Allowed cardinalities are given in brackets. Implicit constraints
check that all instances associated to an association variable are of
the specified type (e.g. ComUnit for Zone.unit) and that the given
cardinalities are not violated (e.g. Zone.unit must contain exactly
one instance).

The constraint specifies in the context of a ComUnit instance,
which elements are to be in the partner association of that unit.
These are all units reachable via its zones and its sensors, where the
unit itself is not member of the association.

Generative CSP is well-suited for the modeling of configuration
problems because of its object-oriented approach (natural and
maintainable formulation of the problem structure), its constraint-
orientedness (declarative formulation of the problem logics), and its
dynamicity. Suitable solvers (e.g. backtracking, heuristic repair) can
easily be integrated.

3 CHANGED PROBLEM

Products and product designs change over time - in our case, there
are two extensions:

1. A sensor can be connected to an outside system (numbered
from 1 upwards). Outside sensors must be placed on special
(outside) communication units which must not be changed or used
otherwise. For example, D01 of example 1 connects to outside
system 1 and shall be placed on a separate unit.

2. There is a new type of zone which collects information from
other zones, not from sensors. Of course, the existing constraints
shall hold (assignment to a unit with at most 2 partner units). For
example, Z456 can be combined from Z45 and Z6, Z2345678 from
Z2378 and Z456.

Figure 5. UML diagram of changed PartnerUnits problem

Figure 5 shows a UML diagram which models the changed
knowledge base: DoorSensor and ComUnit have a new integer
attribute which distinguishes connections to outside systems (0 is
used for sensors without outside connection). Zone gets two sub-
classes - one for the original zone type (therefore the zone2sensor

association is redirected to it), another for the new type (including a
new zone2zone association).

4 CHALLENGES

In the following, we identify some of the major challenges when a
knowledge base is to be changed.

We describe them on the basis of our example and our chosen
representation. The changes in the example may give an impression
of interesting cases which can occur in real-world. Concerning the
representation language, we also tried other approaches like Choco,
DLV, Alloy, etc. They showed more or less similar behavior as our
GCSP representation, so that the latter stands exemplarily in the
following.

4.1 Knowledge Evolution (KB -> KB’)

As products and product designs change over time, so the
knowledge base of the product configurator must be changed, too.

Routine changes, like price changes, should be treated in a way
to avoid expensive knowledge base updates. E.g., instead of hard-
coding the prices of the different components in the knowledge base,
prices are typically loaded from an Excel table or a database during
start-time of the configurator. Care must be taken when values from
the external source are directly used in constraints.

Structural changes of the knowledge base like the examples in
section 3 are more difficult. The modified GCSP formulation of the
knowledge base is shown in Figure 6, the changes are written in
bold (we do not have to delete old content).

Figure 6. GCSP formulation of the modified PartnerUnits problem

In general, the following changes are possible and should be
handled in a way so that the other challenges can be solved as well:
•••• Change property names, attribute types, association domains and

cardinalities, inheritance hierarchy, etc.
•••• Add new component types, attributes, or associations.

abstract class Zone

class ZoneForSensors isa Zone

class ZoneForZones isa Zone

class DoorSensor

 attr outside: 0-*

class ComUnit

 attr outside: 0-*

assoc: ZoneWithSensors.sensors(1-*)

 - DoorSensor.zones(1-*)

assoc: ZoneWithZones.zones(1-*)

 - Zone.combinations(0-*)

assoc: Zone.unit(1) - ComUnit.zones(0-2)

assoc: DoorSensor.unit(1) - ComUnit.sensors(0-2)

assoc: ComUnit.partnerunits(0-2) - self

constraint ComUnit.derivedPartners:

 partnerunits = zones.sensors.unit

 + sensors.zones.unit

 + zones.combinations.unit

 + zones.zones.unit

 - self

constraint DoorSensor.equalOutside:

 outside = unit.outside

class PartnerUnits changed

Zone

id: string

DoorSensor

id: string

outside: int

ComUnit

id: string

outside: int

ZoneW ithZones ZoneW ithSensors

zones 1.. *

zone2zone

combinations 0..*

partnerunit s

0..2

zones 0..2

unit2zone

unit

1

zones 1.. *

zone2sensor
sensors

1.. *

unit

1 unit2sensor

sensors 0..2

69

•••• Delete component types, attributes, or associations.
•••• Change, add, or delete constraints.

In our example, the knowledge engineer had to decide which
class for zones (if any) to reuse in the model - and he decided for
the abstract general class and against the old semantics (for that we
would have needed a new super class of the existing Zone and the
new ZoneWithZones as well as a redirection of unit2zone instead of
zone2sensor). Furthermore, he decided just for a new attribute for
ComUnit instead of a new class.

By that, the existing constraints and cardinalities can stay
unchanged. Only the computation of the partnerunits association
must be extended with the path over zone2zone. A new constraint
for outside systems is necessary (outside number of sensor and its
unit must be the same). Furthermore, implicit knowledge strongly
suggests to disallow cycles in the zone2zone association (omitted
for brevity).

Challenges: Are there any patterns or rationale for putting such
design decisions for change on a sound base?

4.2 Schema Evolution (DB -> DB’)

When existing configuration instances (I) shall be accessed with the
new knowledge base (KB'), it is necessary to also change the
schema of the database (DB) where the instances I are stored. They
must be upgraded to instances which are based on the new database
schema DB' (as part of KB').

In our example, the schema evolution must change the type of all
Zone instances to ZoneWithSensors. In all ComUnit instances, it
must add the outside attribute and set it to 0 (initial value). In all
DoorSensor instances, it must add the outside attribute and set it to
the correct value (which must be supplied externally). The second
action may be derived automatically from KB', the others not.

A way to formalize this transformation of a source schema to a
target schema is the theory of data exchange [8]. For our example,
the source schema is defined by the following predicates:

{sensor/1, zone/1, unit/1,

 zone2sensor/2, unit2sensor/2, unit2zone/2,

 unit2unit/2}

The solution instance shown in Table 1 is therefore represented
by:

{sensor(d01), sensor(d12), …,

 zone(z1), zone(z2345678), zone(z2367), …,

 unit(u1), unit(u2), …,

 zone2sensor(z1, d01), zone2sensor(z1, d12), …,

 unit2sensor(u1, d01), unit2sensor(u1, d78), …,

 unit2zone(u1, z1), unit2zone(u1, z2345678), …,

 unit2unit(u1, u2), unit2unit(u2, u1), …}

The target schema is:

{sensor/1, zone4zones/1, zone4sensors/1, unit/1,

 sensor_outside/2, unit_outside/2,

 zone2sensor/2, unit2sensor/2, unit2zone/2,

 unit2unit/2}

Data exchange transformation rules map a source configuration
to a target configuration (we assume that information about the
outside system of sensors is available in an externally defined table
named sensor_info):

zone(X) -> zone4sensors(X)

unit(X) -> unit(X), unit_outside(X, 0)

sensor(X) and sensor_info(X, V)

 -> sensor(X), sensor_outside(X, V)

zone2sensor(X, Y) -> zone2sensor(X, Y)

unit2sensor(X, Y) -> unit2sensor(X, Y)

unit2zone(X, Y) -> unit2zone(X, Y)

unit2unit(X, Y) -> unit2unit(X, Y)

The Chase procedure then generates a target instance by
applying the transformation rules to the source instance:

{sensor(d01), sensor(d12), …,

 sensor_outside(d01, 1), sensor_outside(d12, 0), …,

 zone4sensors(z1), zone4sensors(z2345678), …,

 unit(u1), unit(u2), …,

 unit_outside(u1, 0), unit_outside(u2, 0), …,

 zone2sensor(z1, d01), zone2sensor(z1, d12), …,

 unit2sensor(u1, d01), unit2sensor(u1, d78), …,

 unit2zone(u1, z1), unit2zone(u1, z2345678), …,

 unit2unit(u1, u2), unit2unit(u2, u1), …}

The performance of this Chase depends on which logical
expressions are used in the transformation rules. In general, there
might be various changes of different difficulty, e.g. renaming, type
changes, value shifts, conditional changes, etc.

Challenges: What are complete, clear, fast, and reliable methods
to specify necessary changes for schema evolution?

4.3 Upgrade Instances (I -> I’)

The new configuration instance is now in the schema of DB’, but
not necessarily consistent to all the constraints of KB’. In order to
get a consistent I', the violated constraints must be repaired. KB'
might contain a new constraint which contradicts some part of the
configuration which is valid with respect to the old KB. Examples
include simple cases like new versions of components, but also
complicated relations between objects.

In our example, D01 should be placed on a separate unit with
outside number 1. Just changing the value of the outside attribute of
its unit is not enough as there are other zones and sensors on that
unit. Moving D01 to a new unit U6 is possible because at present
U1 has just one partner unit and the second partner unit can be set
to U6. The resulting configuration instance is shown in Table 2.

Unit Zones DoorSensors PartnerUnits

U1 Z1 Z2345678 D78 U2 U6-

U2 Z2367 Z45 D12 D56 U1 U3
U3 Z2378 Z6 D34 D67 U2 U4
U4 Z456 Z4 D26 D36 U3 U5
U5 - - D45 - U4 -
U6 - - D01 - U1 -

Table 2: A solution for the upgraded configuration

This solution is not minimal, however well acceptable because
minimality of the solution (i.e. using as few units as possible) is less
important than minimality of changes during upgrade (i.e. the
upgraded configuration shall be as near to the original configuration
as possible). Furthermore there is no trivial way to a better solution:
Trying to reuse U5 instead of a new U6 just by exchanging D01 and
D45 causes that U2 needs 3 partner units (U1, U3, U4) thus
violating another cardinality constraint.

70

Challenges: How does the system know what to do (e.g. not
setting DoorSensor.outside to 0)? Is it useful to specify a white list
(e.g. direction of repair) or black list (e.g. do not change user-set
values) for changes? What are repair actions which ensure that I’ is
as close to I as possible? Can this closeness be formally defined in
terms of an optimization function, shifting the upgrade task from a
search problem to an optimization problem?

In general, it is not possible to detect contradicting constraints by
just checking the set of all constraints in the KB. The question is
whether at least one configuration fulfils all constraints. If the
constraint language is powerful enough (e.g. has quantors and
multiplication), this question is undecidable. For simpler languages
the best algorithm might still be of exponential order. An alternative
approach based on diagnosis is described in [9].

4.4 Solver Adaptation

If domain-independent solvers are used, then no solver adaptations
should be necessary (in the best case).

However, achieving sufficient performance often requires
domain-specific algorithms. In a paper submitted to the forthcoming
AI EDAM special issue on configuration, we present several
domain-independent approaches which all fail to find solutions for
large scale configurations (i.e. containing a lot of instances) even
when they are simple. Those problem instances can only be solved
with domain-specific heuristics exploiting the problem structure or
after mapping the problem to special algorithms from appropriate
fields, e.g. graph theory [10].

Unfortunately, the changed problem does no longer map to a bi-
partite graph which changes the problem structure considerably.
Domain-specific solving must be adapted, usually with relative high
costs. The same is true not only for our problem but also for other
domain-specific implementations.

Challenges: Are there any approaches to reduce domain-specific
algorithms or to support their adaptation to changed requirements?

4.5 UI Extension

The user interface must support configuration work in the best way.
In our example, the configuration process is severely affected by

the new functionality: ZoneWithZones and ZoneWithSensors have
different associations. Outside sensors and units should be
visualized distinctively so that they can be easily distinguished. It
must become possible to manually place sensors on units
(accordingly to requirements of the outside system) before
automatically placing the other sensors and zones.

Some GUI features can be derived directly from the knowledge
base (e.g. classes, attributes, associations) but in general need to be
filtered and/or parameterized (formatted) for better usability. Some
tools allow therefore defining certain UI properties as part of the
knowledge base.

Challenges: To what extent can the UI be defined as a natural
extension of the knowledge base without introducing redundancy or
overhead?

4.6 Adjust I/O

Our example does not contain explicit input or output interfaces.
Typically, input could be some product information in external data
bases (code numbers of components, variations, prices, etc.) or
customer requirements for a product individual (e.g. in XML

format). Possible outputs comprise bill of material, production plans,
etc.

They must be adjusted to the changed model, e.g. output new
attributes' values, input prices of the new types, etc. If many
different output formats are involved - as is typical for configu-
ration tasks in engineering-oriented companies - then
synchronization may get complicated. A typical source of problems
for changes concerning inputs is using the correct version of input
data, i.e. the one matching the current knowledge schema.

Challenges: How to easily and reliably synchronize external
data and output format with the changed model?

4.7 Upgrade Test Suites

Each knowledge base needs tests to ensure quality. This is
especially true for safety-critical domains like railway systems.
Common developer knowledge is that testing effort is as high as
implementation effort. For knowledge base development it tends to
be much higher as the specification language is very concise due to
declarative, multi-functional constraints. Tests should include
checking and solving with various combinations of set and free
variables contributing to each constraint so that a high coverage of
all scenarios is reached.

Regression test cases are usually based on problem statements
and reference solution instances. These instances need to be
upgraded, too (see sections 4.2 and 4.3).

Challenges: How to reduce test efforts, e.g. by automatically
creating part of the tests? How can the regression test cases be
upgraded when they fail because of changes in the knowledge base?
How to distinguish errors in the changed knowledge base from
necessary changes in the test cases?

5 CONCLUSION

We presented a real-world example of knowledge evolution and its
effects on the design of the knowledge base and the upgrade of
existing configuration instances (data bases).

Although over the last years various modeling languages for
product configuration have been suggested (e.g. [11]), we do not
see one which can cope well with all presented challenges.

Substantial research activities are required to improve efficiency
and quality of redesign of knowledge bases for product
configurators. A first step is the definition of the challenges in more
detail and in a formal way.

REFERENCES

[1] D. Sabin and R. Weigel, Product Configuration Frameworks - A

Survey, IEEE Intelligent Systems 13(4), pp. 42-49, 1998.
[2] A. Felfernig, Standardized Configuration Knowledge Representations

as Technological Foundation for Mass Customization, IEEE
Transactions on Engineering Management, 54(1), pp. 41-56, 2007.

[3] T. Männistö, T. Soininen, J. Tiihonen, and R. Sulonen, Framework and

Conceptual Mode for Reconfiguration, AAAI-99 Workshop on
Configuration, pp. 59-64, 1999.

[4] P. Manhart, Reconfiguration - A Problem in Search for Solutions,
IJCAI-05 Workshop on Configuration, pp. 64-67, 2005.

[5] A. Falkner, A. Haselböck, and G. Schenner, Modeling Technical

Product Configuration Problems, ECAI-10 Workshop on Configu-
ration (to appear), 2010.

[6] A. Felfernig, G. Friedrich, D. Jannach, and M. Zanker, Configuration

knowledge representation using UML/OCL, Proceedings of the 5th

71

International Conference on the Unified Modeling Language, pp. 49-62,
Springer-Verlag, 2002.

[7] G. Fleischanderl, G. Friedrich, A. Haselböck, H. Schreiner, and M.
Stumptner, Configuring large-scale systems with generative constraint

satisfaction, IEEE Intelligent Systems 13(4), pp. 59-68, 1998.
[8] R. Fagin, P.G. Kolaitis, R.J. Miller, and L. Popa, Data exchange :

semantics and query answering, Theoretical Computer Science 336, pp.
89-124, 2005.

[9] A. Felfernig, G. Friedrich, D. Jannach, and M. Stumptner, Consistency

based diagnosis of configuration knowledge-bases, Technical Report
KLU-IFI-99-2, University of Klagenfurt, 1999.

[10] B.W. Kernighan and S. Lin, An efficient heuristic procedure for

partitioning graphs, The Bell system technical journal, 1970.
[11] T. Soininen, J. Tiihonen, T. Männistö, R. Sulonen, Towards a general

ontology of configuration, AI EDAM 12, pp. 357-372, 1998.

72

