
Knowledge representation in CGLF, CGIF,
KIF, Frame-CG and Formalized-English

Philippe Martin

Distributed System Technology Centre
Griffith University - PMB 50 Gold Coast MC, QLD 9726 Australia

philippe.martin@gu.edu.au

Abstract. This article shows how CGLF, CGIF, KIF, Formalized-English
and Frame-CG can be used in a panorama of knowledge representation cases.
It highlights various inadequacies of CGLF and CGIF, advantages provided
by high-level expressive notations, and the KIF translations provide a logical
interpretation. Knowledge providers may see this document as a guide for
knowledge representation. Developers may see it as a list of cases to take
into account for their notations and inferences engines.

1 Introduction

A knowledge-based system (KBS) generally uses only one model to store and exploit
knowledge, e.g. a semantic network model such as Conceptual Graphs (CGs) [1],
but may import/export (i.e. accept/present) representations in various notations,
e.g. CGDF (CG Display Form), CGLF (CG Linear Form), CGIF (CG Interchange
Format) and KIF (Knowledge Interchange Format) [2].

Inference engines may or may not exploit all parts of the stored knowledge.
E.g. knowledge retrieval engines may be efficient and provide interesting results
by considering all contexts as positive contexts and ignoring the various logical
meanings of collection types. The more the model has features, the more inferencing
can be done. The more the notations are expressive, the more information can be
entered precisely, exploited, presented and exchanged. In this view, the issues of
computability and decidability are not related to notations or models (provided they
are not restricting) but to inference engines: with expressive notations, each engine
developer may decide which features to exploit in order to deal with the problems
of efficiency, consistency and completeness. Thus, restricting notations can never
be an advantage, they can only limit and bias knowledge modelling and the many
possible inferencing techniques. This article does not explore the computability of
inferencing operations made possible by expressive notations; this vast subject is
the focus of the description logics litterature.

Are some notations better than others for knowledge representation and ex-
change? According to the above, expressiveness is one criteria. Readability and
conciseness are important too, since they ease the understanding of knowledge and,
for the developers, ease debugging. Knowledge entering easiness is a criteria related
to conciseness and how high-level the notation is (i.e. how many ontological distinc-
tions have a special intuitive syntax). Also related and important is the knowledge
normalizing effect of the notation: the fewer choices a knowledge provider has for

representing a piece of information (in a simple way), the easier it is to develop an
inference engine (or knowledge matching technique) that can relate and compare
this representation to other ones. Thus, high-level expressive notations seem better
for knowledge representation and exchange than low-level expressive notations such
as KIF, or low-level restricted notations such as RDF/XML.

From a knowledge provider’s viewpoint, another problem (with all notations but
especially low-level or restricted ones), is how to express knowledge. The documen-
tations about notations often only provides a grammar, a few simple examples, and
omit to explain how to represent more complex cases commonly found in natural
language sentences, or to state that some of these cases cannot be represented. This
lack of details also make notations difficult to compare. For example, the documen-
tations of CGIF [1] and RDF/XML [3] are currently very poor. The documentation
of KIF is completed by the Ontolingua library1 but several knowledge representation
cases are still difficult to find. Knowledge representation with CGLF is relatively
well documented in [8] and [9] but CGLF is not standardized and inconsistent
usages are often encountered, even in Sowa’s descriptions [8] [9]. Finally, the logical
interpretation of many keywords (syntactic sugar for some features) is not always
provided, as for example is the case for CGIF and RDF/XML.

To provide some answers to the previous questions and problems, this article
presents a panorama of knowledge representation features and shows how various
notations can be used (or extended to be used) to cover these features. (We focused
on features that are commonly required to represent of natural language sentences
and knowledge representation in general, e.g. numerical quantifiers, but rarely or
badly handled by most notations; [8] and [9] were initially used as models). In
addition to CGLF, CGIF and KIF, this document presents two notations derived
from CGLF and designed to be as intuitive2 as possible in all the presented cases:
Formalized English (FE) and Frame-CG (FCG) [6] 3. (RDF/XML has also been
examined4 but because of space limits, the results are not presented here)5.

Knowledge providers may see this document as a guide for knowledge represen-
tation. KBS developers may see it as a list of cases to take into account. Language
developers may see it as a workbench for comparing their notations to others. The
translation into KIF also provides a logical interpretation for the other notations.

In each example of this article, we follow the lexical conventions (e.g. singular
nouns, English spelling) and ontological conventions that we advocated in [6] for
knowledge comparison, retrieval and exchange. Except in Section 11 (which deals
with category declaration) the categories are supposed to be already declared.

1 http://www-ksl-svc.stanford.edu:5915/
2 The use of English articles or expressions as (extended) quantifiers, one of our ideas

to obtain a more intuitive and “knowledge normalizing” notation, was also applied
(although to a less extent) in KM, the Knowledge Machine notation [4].

3 WebKB-1, our first Web-based KBS, imports and exports CGLF, FCG and FE.
WebKB-2 [7] currently only uses FCG and partially exports in RDF/XML, but will
later also import and export in FE, CGLF, CGIF and KIF. Grammars and parsing
examples of these notations are at: http://www.webkb.org/doc/grammars/

4 See http://www.webkb.org/doc/translations.html
5 This article also only presents a panorama of “logical features”; ontological examples in

FCG can be found on the WebKB site: http://www.webkb.org

2 Conjunctive Existentially Quantified Statements

Here is an example of such simple forms of knowledge. “E” is for “English”.
E: Tom owns a dog that is not Snoopy.

FE: Tom is owner of a dog different_from Snoopy.

FCG: [Tom, owner of: (a dog != Snoopy)]

CGLF: [T:Tom]<-(owner)<-[dog:*x!=Snoopy] //T: uppermost concept type

CGIF: [dog:*x] (owner ?x Tom) (different_from ?x Snoopy)

KIF: (exists ((?x dog)) (and (owner ?x Tom) (/= ?x Snoopy)))

A problem is that different_from is not in the CG standard [1], thus leading
people to use other identifiers for this basic form of negation and hence making
knowledge matching difficult. As long as the CG standard, or an ontology referred
by the CG standard, does not introduce a number of keywords for common relations
and quantification, knowledge sharing and inferencing with CG will remain difficult.

The CGLF statement uses “!=” in the declaration of a coreference variable to
specify that the variable does not refer to a certain individual. This syntax has
often been used, e.g. by Sowa [8] [9], but is not included in the minimal CGLF
grammar given in the CG standard [1]. We have used it because it is convenient
and semantically equivalent to what is expressed with the other notations.

3 Contextualization

Contexts allow us to represent statements over statements. Contexts are often repre-
sented via delimitors, e.g. ‘...’ in FE, [...] in FCG, ’(...) and ˆ(...) in KIF.
E: Tom believes Mary now likes him (in 2002) and before she did not.

FE: Tom is believer of ‘ *p ‘Mary is liking Tom’ at time 2002’

and is believer of ‘!*p is before 2002’.

FCG: [Tom,believer of: [*p [Mary, agent of:(a liking,object:Tom)],time:2002],

believer of: [!*p, before: 2002]]

CGLF:[proposition: *p [T:Mary]<-(agent)<-[liking]->(object)->[T:Tom]]

[T:Tom]- { (believer)<-[[situation: ?p]->(time)->[time:"2002"],

(believer)<-[[situation:~?p]->(before)->[time:"2002"]] }

CGIF:[proposition *p: (agent [liking *l] Mary) (object ?l Tom)]

(believer [situation: (time [situation: ?p] "2002")] Tom)

(believer [situation: (before [situation: ~[?p]] "2002")] Tom)

KIF: (exists (?p)

(and (= ?p ’(exists((?x liking)) (and (agent *l Mary)(object ?l Tom))))

(believer ^(time ,?p 2002) Tom) //’,?p’->the value of ?p is quoted

(believer ^(before (not ,?p) 2002) Tom)))

Relations of type believer, time and before connect an instance of the type
situation to another object. In CG, it is customary to distinguish the “propo-
sition” stated by a statement/graph/formula from the described “situation”. This
distinction is explicit in CGLF and CGIF above. However, making this distinction
is sometimes difficult for novices, and it is inconvenient because it leads to adding
several intermediary contexts. Since these contexts can be automatically inserted
by a parser according to the signatures of the used relations, we have not included

the intermediary contexts in the other notations. (We also assumed parsers can
understand that 2002 is a date, based on relation signatures).

In CGLF and CGIF, a coreference variable is introduced with the prefix ’*’ and
re-used within the same context with the prefix ’?’. Thus, two embedded sibling
contexts may introduce variables with the same name but not referring to the same
object. We do not think this approach is easy to follow.

Instead, in FE and FCG, variables may be prefixed by ’?’ or ’*’ (or ’@’ for
collections, as in KIF) and a variable introduction is most often distinguished by
being used with a type and a quantifier (hence, a variable introduction must precede
its re-use). When, within a graph, a variable re-use exists in a context (c1) different
from the context (c2) where the variable has been introduced, the convention is
that the variable is assumed to have been introduced in the minimum upper context
embedding c1 and c2 (in CGLF and CGIF, this has to be done explicitly by the
user but this can be cumbersome and counter-intuitive).

Finally, FE and FCG also permit the introduction of free variables with the
prefix ’ˆ’. Their semantics are the same as in KIF: within statements (as opposed to
queries), these variables are assumed to be introduced with an universal quantifier in
some upper context (as before, the lowest context that includes all the introductions
and re-uses of the variables).

4 Universal Quantification

E: Animals have exactly one head.

FE: Any animal has for part 1 head.

FCG: [any animal, part: 1 head]

CGLF: [animal: @forall]->(part)<-[head: @1]

CGIF: (part [animal: @forall] [head: @1])

KIF: (forall ((?a animal)) (exists1 ’?h (and (head ’?h) (part ?a ’?h))))

Here is our KIF definition of exists1:
(defrelation exists1 (?var ?predicate) :=

(truth ^(exists (,?var) (and (,?predicate ,?var)

(forall (?y) (=> (,?predicate ?y) (= ,?var ?y)))))))

Problem with the CGLF and CGIF statements: @1 is common but not standard.

5 Lambda Abstraction, Percentage, Possibility, Valuation

E: At least 93% of healthy birds can fly.

FE: At least 93% of [bird with chrc a good health] can be agent of a flight.

FCG: [at least 93% of (bird, chrc: a good health), can be agent of: a flight]

CGLF:[physical_possibility:

[lambda(b)[bird:*b]->(chrc)->[health]->(measure)->[value:good]: @>93%]

<-(agent)<-[flight]]

CGIF:[(lambda(bird *b) [health *h] (chrc ?b ?h) (measure ?h good)) *x: @>93%

[physical_possibility: (agent [flight] *x)]]

KIF: (defrelation healthy_bird (?b) :=

(exists ((?h health)) (and (bird ?b) (chrc ?b ?h) (measure ?h good))))

(forAtLeastNpercent 93 ’?x healthy_bird

(exists ((?f flight)) (physical_possibility (agent ?f ’?x))))

Here is our KIF definition of forAtLeastNpercent (and associate functions):

(defrelation forAtLeastNpercent (?n ?var ?type ?predicate) :=

(exists ((?s set))

(and(truth ^(forall (,?var) (=> (member ,?var ,?s) (,?type ,?var)))

(>= (numMembersSuchThat ,?s ,?predicate) (/ (* (size ,?s) ?n) 100)))))

(define-function numMembersSuchThat (?set ?p) :-> ?num :=

(if (and (set ?set) (predicate ?p)) (numElemsSuchThat (listOf ?set) ?p)))

(define-function numElemsSuchThat (?list ?p) :-> ?num :=

(cond ((null ?list) 0)

((list ?list) (if ?p (1+ (numElemsSuchThat (rest ?list) ?p))))))

The CGLF and CGIF representations have several problems.
First, although @>93 is permitted as “defined quantifier” by the CG standard,

@>93% is syntactically incorrect. Furthermore, since a “defined quantifier” can be
anything and cannot actually be defined, its meaning is left implicit (the standar-
dization of common extended quantifiers such as @>93% is necessary).

Second, physical_possibility is not in the current CG standard.
Third, only the agent relation should be contextualized. In CGLF, this is cum-

bersome. In CGIF, should the concept with type physical_possibility be in the
referent part of the concept with the numerical quantifier (@>93%)? What is the
actual meaning of this construction? How can the scope of this quantifier be deli-
mited otherwise? The CG standard says that “for complex mixtures of quantifiers,
the scope can be delimited by transparent contexts (marked by context brackets []
with no type label)”. But is it consistent with the other uses of concept embedding?

Fourth, good is not in the CG standard. FE and FCG have five keywords for
quantitative valuation: good, bad, important, small, big, great. This allows the
user to avoid introducing adjectives (categories with adjectives as names) into the
ontology and hence makes it more (re-)usable [6]. We do not believe that average
users can or should define valuations for each possible measurable quantity (e.g.
what would good_boy, good_work, good_food and bad_food mean?).

Fifth, measure and value are not standard either. Extensions or ontological
conventions are needed to permit knowledge exchange and exploitation.

Sixth, in the CGIF statement, should *b and *x be merged into a single variable?
The CG standard does not give indications.

Seventh, how to represent lambda-abstractions in CGLF? Sowa put them in
referent fields of concepts, and used the character λ in his articles and the HTML
encoding of this character (λ) in the CG standard (and sometimes even
λ₁ and λ₂). We adopted a more classic
and consistent notation closer to the one used in CGIF.

We have not found a simple way to represent a lambda-abstraction (that is, an
anonymous type declaration) in KIF. Hence, we used a normal type declaration.

The above example can be modified to refer to “most birds” instead of “93%
of birds”. In FE and FCG, the keyword most may be used and is is equivalent to
at least 60% (hence, it can be translated to KIF in this form). In CGLF and

CGIF, @most may be used but its meaning has not been made explicit.

6 Negations, Exclusions and Alternatives

We have already seen two forms of negation: the different_from relation (/= in
KIF), and the negation of a statement (“not” in KIF) which is more difficult to
exploit by inference engines and leaves room for ambiguity. For example, “Tom
does not own a blue car” may mean that “Tom has a car but not blue” or “Tom
does not have a car”. Thus, it is better to use the first form, or break statements into
smaller blocks connected by coreference variables to reduce or avoid ambiguities.

Here is a variant of the first form: negation on types.
E: Tom owns something that is not a car.

FE: Tom is owner of a !car. FCG: [Tom, owner of: a !car]

CGLF:[T:Tom]<-(owner)<-[~car:*] CGIF: (owner [~car] Tom)

KIF: (exists (?type ?x) (and (owner ?x Tom) (holds ?type ?x) (/= ?type car)))

Exclusion between objects (and hence, some forms of negation) may also be
represented via collections of exclusive objects. FE and FCG use OR-collections
and XOR-collections as syntactic means to store “or” and “xor” relations between
objects (types, instances or statements). Here is an example of OR-collection between
instances. (Note: red, yellow and orange are not instance but subtype of color,
and have many subtypes, e.g. crimson, dark_red and chrome_red. Their instances
are the actual occurrences of color that physical objects have.)
E: Tom’s car is red, yellow or orange.

FE: Tom is owner of a car that has for color OR{a red, a yellow, an orange}.

FCG: [Tom, owner of: (a car, color: OR{a red, a yellow, an orange})]

CGLF:[Tom]<-(owner)<-[car]->(chrc)->[color]->(kind)->[TYPE:OR{red,yellow,orange}]

CGIF:[car:*x] (owner *x Tom) (color *x [red|yellow|orange:])

KIF: (exists ((?x car) ?c)

(and (owner ?x Tom) (color ?x ?c) (or (red ?c)(yellow ?c)(orange ?c))))

There is no usual way to represent OR collections in CGLF; we used the FCG
way rather than the CGIF way because it is more general (in CGIF, only types can
be OR-ed without introducing contexts).

In this example, it would have been simpler to use a type such as warm_color
instead of the OR-collection of red, yellow and orange (and this form makes infe-
rencing easier). More generally, this section shows that a negation can be represented
in numerous ways and that these representations are difficult for an inference engine
to compare and hence exploit fully. Both for knowledge exchange with frame-based
systems and for knowledge inferencing, different_from relations between instances
or types should be prefered to other forms of negations.

7 Collections and Quantifier Precedence

Collections have been introduced in the previous section and via examples using
numerical quantifiers. In this section, we show how various interpretations of the
English sentence “4 judges have approved 3 laws” (and some variations of it) can
be interpreted. By studying how to represent relations between members of two
simple collections, we illustrate the importance of specifying how a collection must

be interpreted, and show how to handle complex cases of quantifier precedence
(between numerical, existential and universal quantifiers).

The sentence “4 judges have approved 3 laws” is ambiguous. The 4 judges may
have individually or collectively approved 3 laws (the same 3 or not), and “collec-
tively” may have two meanings: the participation in a “unique” approval act or
the approval of “most” of the laws (or a combination of both as illustrated in the
last example of this section). In this paper, “judges acting together/collectively”
means that “there exists an act and each of the judges is an agent of that act”.
This interpretation of “collectiveness” was used by Sowa in [8] and implies that the
act can only be represented by a concept node, not by a relation node (this has not
been made explicit by Sowa).

In CGs [8], any collection in a concept of a CG can be specified as having a
distributive interpretation (each member of the collection individually participates
to the relations associated with the concept), a collective interpretation (the mem-
bers collectively participate in the relations associated with the concept), a default
interpretation (an unspecified mix of collective and distributive interpretation) or
a cumulative interpretation (the relations are about the collection itself). (The cur-
rent CG standard does not specify what the various interpretations of a collection
can be, not even within the CGIF grammar; it mentions the keyword Col as a
“collective designator” but not the keywords Dist and Cum used in [8]).

The first example keeps the ambiguity of the above sentence (both collections
have the default interpretation). The ‘s’ at the end of judges and laws in the
FE and FCG representations are supposed to be automatically removed (as does
WebKB-2 when a numerical or universal quantifier is involved). To highlight the
logical interpretations, this section provides predicate logic (PL) translations instead
of FE translations.

E: 4 judges have (each/together) approved 3 laws.

FCG: [4 judges, agent of: (an approval, object: 3 laws)]

CGLF: [judge:{*}@4 @certain]<-(agent)<-[approval]->(object)->[law:{*}@3]

CGIF: (agent [approval:*a] [judge: @4 @certain]) (object ?a [law: {}@3])

KIF: (forAllN 4 ’?j judge (forAllN 3 ’?l law

(exists ((?a approval)) (and (agent ?a ’?j) (object ?a ’?l)))))

PL: ∃js set(js) ∧ size(js, 4) ∧ ∀j ∈ js ∃ls set(ls) ∧ size(ls, 3) ∧ ∀l ∈ ls

∃a approval(a) ∧ agent(a, j) ∧ object(a, l)

For modularity, we introduced the “quantifier” forAllN.
(defrelation forAllN (?num ?var ?type ?predicate) :=

(exists ((?s set)) (and (size ?s ?num)

(truth ^(forall (,?var) (=> (member ,?var ,?s)

(and (,?type ,?var) ,?predicate)))))))

In CGLF and CGIF, the order of the quantifiers at a same level in a context
is specified via a simple convention: the existential quantifier marked by the key-
word @certain has precedence over the universal/numerical quantifiers which have
precedence over the over existential quantifiers. Remaining ambiguities have to be
solved by the user via the addition of contexts. In FE and FCG, the order and scope
of the quantifiers follow the order and structure of the graphs. The next example
shows a simple inversion of the quantifier scopes.

E: 3 laws have been approved by 4 judges (each/together).

FCG: [3 laws, object of: (an approval, agent: 4 judges)]

CGLF: [judge:{*}@4]<-(agent)<-[approval]->(object)->[law:{*}@3 @certain]

CGIF: (agent [approval:*a] [judge:@4]) (object ?a [law: {}@3 @certain])

KIF: (forAllN 3 ’?l law (forAllN 4 ’?j judge

(exists ((?a approval)) (and (agent ?a ’?j) (object ?a ’?l)))))
PL: ∃ls set(ls) ∧ size(ls, 3) ∧ ∀l ∈ ls ∃js set(js) ∧ size(js, 4) ∧ ∀j ∈ js

∃a approval(a) ∧ agent(a, j) ∧ object(a, l)

In FE and FCG, the collective interpretation is specified via the keywords set of,
group of, together, bag of, list of, sequence of or alternatives (the first
three are synonyms; in this paper, we most often use set). In CGLF and CGIF,
the keyword Col is used, and the collection is assumed to be a set.

If we take the two previous examples and gradually introduce the collective inter-
pretation for the collections, we obtain five different logical interpretations (instead
of six because when both collections are collectively interpreted, the inversion of
quantifier scopes does not change the meaning). Below are three of these combina-
tions (the other two are: “A group of 3 laws has been approved by 4 judges” and
“A group of 4 judges has approved 3 laws”). In the third case, we give the three
equivalent FCG statements.
E: 4 judges have (each/together) approved a group of 3 laws.

FCG: [4 judges, agent of: (an approval, object: a set of 3 laws)]

CGLF: [judge:{*}@4 @certain]<-(agent)<-[approval]->(object)->[law:Col{*}@3]

CGIF: (agent [approval:*a] [judge:@4]) (object ?a [law:@Col{}@3 @certain])

KIF: (forAllN 4 ’?j judge (exists ((?ls set) (?a approval))

(forAllIn ?ls 3 ’?l law (and (agent ?a ’?j) (object ?a ’?l)))))

PL: ∃js set(js) ∧ size(js, 4) ∧ ∀j ∈ js ∃ls set(ls) ∧ size(ls, 3) ∧
∃a approval(a) ∀l ∈ ls agent(a, j) ∧ object(a, l)

E: 3 laws have been approved by a group of 4 judges.

FCG: [3 laws, object of: (an approval, agent: a set of 4 judges)]

CGLF: [judge:Col{*}@4]<-(agent)<-[approval]->(object)->[law:{*}@3 @certain]

CGIF: (agent [approval:*a] [judge:@Col{}@4]) (object ?a [law:@3{} @certain])

KIF: (forAllN 3 ’?l law (exists ((?js set) (?a approval))

(forAllIn ?js 4 ’?j judge (and (agent ?a ’?j) (object ?a ’?l)))))

PL: ∃ls set(ls) ∧ size(ls, 3) ∧ ∀l ∈ ls ∃js set(js) ∧ size(js, 4) ∧
∃a approval(a) ∀j ∈ js agent(a, j) ∧ object(a, l)

E: A group of 4 judges has approved a group of 3 laws.

FCG: [a set of 4 judges, agent of: (an approval,object:a set of 3 laws)]

or: [a set of 3 laws, object of: (an approval,agent:a set of 4 judges)]

or: [an approval, agent: a set of 4 judges, object: a set of 3 laws]

CGLF: [judge: Col{*}@4]<-(agent)<-[approval]->(object)->[law: Col{*}@3]

CGIF: (agent [approval: *a] [judge: @Col{}@4])

(object ?a [law: @Col{}@3 @certain])

KIF: (exists ((?a approval) (?js set) (?ls set))

(forAllIn ?js 4 ’?j judge (forAllIn ?ls 3 ’?l law

(and (agent ?a ’?j) (object ?a ’?l)))))

PL: ∃a approval(a) ∧ ∃js set(js) ∧ size(js, 4) ∧ ∃ls set(ls) ∧ size(ls, 3) ∧
∀j ∈ js ∀l ∈ ls agent(a, j) ∧ object(a, l)

Here is how we define the “quantifier” forAllIn.
(defrelation forAllIn (?s ?num ?var ?type ?predicate) :=

(and (size ?s ?num)

(truth ^(forall (,?var) (=> (member ,?var ,?s)

(and (,?type ,?var) ,?predicate))))))

In FE and FCG, the distributive interpretation is specified via the keyword each.
In CGLF, the keyword Dist is used. The CG standard does not address this issue
but allows @Dist in CGIF. If we introduce the distributive interpretation into the
previous seven combinations, we obtain nine different logical interpretations. Here
are two of them.
E: 4 judges have each approved 3 laws.

FCG: [each of 4 judges, agent of: (an approval, object: 3 laws)]

CGLF: [judge: Dist{*}@4]<-(agent)<-[approval]->(object)->[law:{*}@3]

CGIF: (agent [approval:*a] [judge: @Dist{}@4]) (object ?a [law:{}@3])

KIF: (forAllN 4 ’?j judge (exists!! ’?j ’?ls set (forAllIn ’?ls 3 ’?l law

(exists!! ’?j ’?a approval (and (agent ’?a ’?j)(object ’?a ’?l))))))

PL: ∃js set(js) ∧ size(js, 4) ∧ ∀j ∈ js ∃!!ls set(ls) ∧ size(ls, 3) ∧
∀l ∈ ls ∃!!a approval(a) ∧ agent(a, j) ∧ object(a, l)

E: 4 judges have each approved a group of 3 laws.

FCG: [each of 4 judges, agent of: (an approval,object: a set of 3 laws)]

CGLF: [judge:Dist{*}@4]<-(agent)<-[approval]->(object)->[law:Col{*}@3]

CGIF: (agent [approval:*a] [judge:@Dist{}@4]) (object ?a [law:@Col{}@3])

KIF: (forAllN 4 ’?j judge (exists!! ’?j ’?ls set (exists!! ’?j ’?a approval

(forAllIn ’?ls 3 ’?l law (and (agent ’?a ’?j) (object ’?a ’?l))))))

PL: ∃js set(js) ∧ size(js, 4) ∧ ∀j ∈ js ∃!!ls set(ls) ∧ size(ls, 3) ∧
∃!!a approval(a) ∀l ∈ ls agent(a, j) ∧ object(a, l)

Below is our KIF definition of exists!! (∃!!). This quantifier permits us to
specify that the judges are agent of different approvals and different laws (first
example above) or groups of laws (second example above).
(defrelation exists!! (?var1 ?var2 ?type ?predicate) :=

(truth ^(exists (,?var2)

(and (,?type ,?var2) (,?predicate ,?var1 ,?var2)

(forall (?x) (=> (,?predicate ,?var1 ?x) (= ,?var2 ?x)))

(forall (?y) (=> (,?predicate ?y ,?var2) (= ,?var1 ?y)))))))

Finally, we can introduce “most” as an interpretation of collectiveness in the
previous (7+9=16) combinations. Hence, 16 new logical interpretations. Here is one.
E: A group of 3 laws has been approved by most in a group of 4 judges.

FCG: [a group of 4 judges, agent of:

(an approval, object: most in a group of 3 laws)]

or: [most in a group of 3 laws, object of:

(an approval, agent: a group of 4 judges)]

CGLF: [judge:Col{*}@4]<-(agent)<-[approval]->(object)->[law:Col{*}@3 @most]

CGIF: (agent [approval:*a] [judge:@Col{}@4])(object ?a [law:@Col{}@3 @most])

KIF: (exists ((?a approval) (?js set) (?ls set))

(forAllIn ?js 4 ’?j judge (forMostIn ?ls 3 ’?l law

(and (agent ?a ’?j) (object ?a ’?l)))))

PL: ∃a approval(a) ∧ ∃js set(js) ∧ size(js, 4) ∧ ∃ls set(ls) ∧ size(ls, 3) ∧
∀j ∈ js agent(a, j) ∧ ∃mostOfls set(mostOfls)

(∀l ∈ ls (object(a, l) => l ∈ mostOfls)) ∧ size(mostOfls) >= 2

// >= 2 since size(ls)/2 = 1.5

Here is how we define forMostIn (see Section 5 for numMembersSuchThat).
(defrelation forMostIn (?set ?num ?var ?type ?predicate) :=

(and (size ?set ?num)

(truth ^(forall (,?var) (=> (member ,?var ,?set) (,?type ,?var))))

(>= (numMembersSuchThat ,?set ,?predicate) (* (size ,?set) 0.60))))

8 Intervals

E: Tom has been running for 45 minutes to an hour.

FE: Tom is agent of a run with duration a period with part 45 to 60 minutes.

FCG: [Tom, agent of: (a run, duration: (a period, part: 45 to 60 minutes))]

CGLF:[run]- { (agent)->[Tom],

(duration)->[period]->(part)->[minute: Col{*}@45-60] }

CGIF:(agent [run *r] Tom) (duration ?r [period *d])

(part ?d [minute: @Col{}@45-60])

KIF: (exists ((?r run) (?p period) (?minutes set))

(and (agent ?r Tom) (duration ?r ?p)

(forAllInBetween ?minutes 45 60 ’?m minute (part ?p ’?m))))

Here is how we define forAllInBetween.
defrelation forAllInBetween (?s ?n1 ?n2 ?var ?type ?predicate) :=

(exists (?n) (and (size ?s ?n) (>= ?n ?n1) (=< ?n ?n2)

(truth ^(forall (,?var) (=> (member ,?var ,?s)

(and (,?type ,?var) ,?predicate))))))

In these CGLF and CGIF, the collective interpretation is specified for the
minutes so that the numerical quantifier has the lowest precedence. In FE and
FCG, the graph structure is sufficient to specify the scopes of the quantifiers.

In all these notations, a concept of type period had to be introduced since the
minutes participate in the same period/duration. This is the same problem as for the
collective participation to an act: the act cannot be represented as a relation. Here,
a relation of type duration cannot directly connect the run to the minutes. We
only became aware of this problem when trying to produce the KIF representation.

9 Function Calls and Lists

Special syntactic sugar to distinguish functional relations from other relations is not
mandatory since this distinction can be specified in the relation type declaration
(hence, all notations permit function calls even if they do not permit function defi-
nitions). However, a syntactical difference eases readablility and syntactic checking.
The next example involves two functions (length, +) and one relation (<).
E: The length of the list "Tom, Joe, Jack" plus 1 is less than 5.

FE: length(LIST{Tom,Joe,Jack}) + 1 < 5.

FCG: [length(LIST{Tom,Joe,Jack}) + 1 < 5]

CGLF: [number:*x]<-<plus>- <-1- [number]<-<length><-[T: <Tom,Joe,Jack>],

<-2- [number:1]

[?x]->(superior)->[number:5]

CGIF: <length [T: <Tom,Joe,Jack>] *l> <plus ?l 1 [number]>

KIF: (superior (+ (length (listof Tom Joe Jack)) 1) 5)

Problem with the CGIF notation: the CG standard specifies that angular brackets
should be used to delimit lists but the CGIF grammar only accepts curly brackets.
Furthermore, length and plus are not in the CG standard, thus leading people to
use other identifiers and hence making knowledge comparison difficult.

In FE and FCG, the notation for functional relations can also be used to repre-
sent non-binary relations (in CGLF, CGIF and KIF, binary and non-binary rela-
tions have a similar syntax; this does not lead the knowledge provider to use binary
relations only, and hence leads to less explicit and comparable statements [6]).

10 Higher-order Statements

First-order statements quantify over individuals. Higher-order statements also quan-
tify over types. For example, describing the transitivity of a particular relation (e.g.
“the part of a part is also a part”) can be a first-order statement, but describing in
general what a transitive relation is, requires a second-order statement. Since defini-
tions will be presented in the next section, the next example does not define a type
such as transitive_binary_relation but uses the characteristic transitivity.
E: If a binary relation type rt is transitive

then if x is connected to y by a relation of type rt, and

y is connected to z by a relation of type rt,

then x is connected to z by a relation of type rt.

FE: If ‘a binaryRelationType *rt has for chrc the transitivity’

then ‘if ‘^x has for *rt ^y that has for *rt ^z’

then ‘^x has for *rt ^z’ ’. //rt,x,y,z are free variables

FCG: [[a binaryRelationType *rt, chrc: the transitivity] =>

[[^x, *rt: (^y, *rt: ^z)] => [^x, *rt: ^z]

]]

CGLF: [IF: [binaryRelationType: *rt]->(chrc)->[transitivity]

[THEN: [IF: [T: *x]->(&rt)->[T: *y]->(&rt)->[T: *z]

[THEN: [?x]->(&rt)->[?z]

]]]]

CGIF: [IF: (chrc [binaryRelationType *rt] [transitivity])

[THEN: [IF: (holds ?rt [T:*x] [T:*y]) (holds ?rt ?y [T:*z])

[THEN: (holds ?rt ?x ?y)

]]]]

KIF: (exists ((?t transitivity))

(forall ((?rt binaryRelationType) ?x ?y ?z)

(=> (chrc ?rt ?t)

(=> (and (holds ?rt ?x ?y)(holds ?rt ?y ?z)) (holds ?rt ?x ?z)))))

In CGLF, we used ’&’ to specify the mapping from the relation type rt to a free
variable referring to a relation of type rt. [Sowa, 1993] uses the greek character ρ but
this character is not easy to enter. An alternative would be to keep the variable re-
use prefix ’?’ since the location of the re-use (i.e. within a relation) seems sufficient

to highlight the special semantic. We adopted this second solution in FE and FCG
(in the example, ’ˆ’ is used instead of ’?’ or ’*’ when a free variable is used). In
CGIF, since the current syntax does not permit variables for relation types, we used
a universal quantifier and the relation type holds, as in KIF.

11 Declarations and Definitions

In RDF/XML, a category is uniquely identified by a URI, e.g. http://www.foo.com
and http://www.bar.com/doc.html#car. In a multi-user KBS such as WebKB-2
[7], user identifiers are more convenient knowledge source identifiers than document
URIs. Thus, in WebKB-2, a category identifier can be not only a URI or an e-mail
address but also the concatenation of the knowledge provider’s identifier and a key
name, e.g. wn#dog and pm#IR_system (“wn” refers to WordNet 1.7 and “pm” is the
login name of the user represented by the category philippe.martin@gu.edu.au).
In this third case, the category may still be referenced from outside the KB by prefi-
xing the identifier with the URL of the KB, e.g. http://www.webkb.org/kb/wn#dog.

This identifier encoding is used for all the input/output notations in WebKB-2
(FCG, FE, KIF, CGIF, CGLF) except for RDF/XML where URIs have to be used.

In addition to an identifier, a category may have various names (which may be
names of other categories). In FE and FCG, a category identifier may show all the
names given by its creator, e.g. wn#dog__domestic_dog__Canis_familiaris (at
least two underscores must be used to separate the names).

WebKB-2 proposes a special notation to declare categories and links (i.e. second-
order relations) between them: the “For Ontology” (FO)6 notation. It is an extension
of the special notation used in CGLF for specialization links between categories.
Hence, in the following example, we use FO instead of FE, FCG and CGLF.

For the KIF representation, we chose to use relation types from RDF, RDFS
and DAML+OIL rather than from the Frame-ontology and OKBC-ontology of the
Ontolingua library, in order to ease the comparison with RDF/XML representations.

For CGIF, we used special relation types (see identifiers in uppercase) and hence
extended the grammar because this is more in the spirit of the notation (it is sup-
posed to be of higher-level than KIF or RDF/XML and hence already incorporates
many special categories such as EQ, GT and LT; such special cases also ease seman-
tic checking and inferencing). We used the same syntactic sugar as in FO to delimit
subtype partitions. More details on the rationales and the grammar of our extensions
to CGIF can be found on the WebKB site (http://www.webkb.org/doc/CGIF.html).

FO: pm#thing__top_concept_type (^thing that is not a relation^) 29/11/1999

_ chose (oc fr), ^ rdfs#class, ! pm#relation, = sowa#T,

> {(pm#situation pm#entity)} pm#thing_playing_some_role;

CGIF: [TYPE: pm#thing *x ;thing that is not a relation;]

(CREATOR ?x philippe.martin@gu.edu.au) (CREATION_DATE ?x 29/11/1999)

(NAME ?x "thing") (NAME ?x "top_concept_type")

(NAME_BY_IN ?x "chose" Olivier.Corby@sophia.inria.fr wn#french)

(KIND ?x rdfs#class) (EXCL ?x pm#relation) (EQ ?x sowa#T)

(GT ?x {pm#situation pm#entity}) (GT ?x pm#thing_playing_some_role)

6 http://www.webkb.org/doc/F languages.html#FO

KIF: (defrelation pm#thing ()) (rdfs#class pm#thing)

(pm#name pm#thing "thing") (pm#name pm#thing "top_concept_type")

(pm#nameWithCreatorAndLanguage pm#thing "chose"

Olivier.Corby@sophia.inria.fr wn#french)

(dc#Creator pm#thing philippe.martin@gu.edu.au)

(dc#Date pm#thing "29/11/1999")

(rdfs#comment pm#thing "thing that is not a relation")

(daml#disjointWith pm#thing pm#relation) (= pm#thing sowa#T)

(daml#disjointUnionOf pm#thing ’(pm#situation pm#entity))

(rdfs#subClassOf pm#thing_playing_some_role pm#thing)

In FO, the creator of a link is left implicit when it is also the creator of the
category source of the link. Otherwise, the creator has to be specified (as illustrated
above for the name “chose”). To represent link creators in the other notations, either
contexts or relations with arity higher than two must be used (as illustrated).

“SubtypeOf” links are special cases of definition of necessary conditions for
(being an instance of) the source categories. Here is an example of how more general
cases for the definition of necessary conditions can be represented.
E: A man (according to "pm") has necessarily for father a man.

FCG: [type pm#man (*x) :=> [*x, pm#father: a pm#man]]

CGLF: [TYPE: pm#man]->(LT)->[(lambda(*x) [?x]->(pm#father)->[pm#man])]

CGIF: (LT pm#man (lambda (T *x) (pm#father ?x [pm#man])))

KIF: (defrelation pm#man(?p) :=> (exists((?p2 pm#man)) (pm#father ?p ?p2)))

To define sufficient conditions, GT and :<= may be used instead of LT and :=>.
To define necessary and sufficient conditions, EQ and := may be used.

The CG standard is quite incoherent and restrictive about lambda-abstractions
and type definitions. The above proposal (with GT, LT, EQ) is the closest generalization
we found. We took into account the possible need to contextualize the definitions
themselves: with the usual CGLF syntax for type definition with necessary and suffi-
cient conditions (as in: type pm#red_car is [pm#car]->(pm#chrc)->[pm#red]),
contextualization cannot be done (unless the grammar is extended to accept such
definitions as embedded graphs).

The CG standard does not specify how to define functional relations (actors),
just how to use them. The next example is adapted from [9]: we preferred to use
the IF construct rather than Sowa’s ternary relation < and quadrary relation cond.

E: The length of a list is 0 if the list is empty,

otherwise, 1 + the length of the list without its first element

FCG: [function length (list *l) :-> natural *r

:= [if [l = nil] then [*r = 0] else [*r = 1 + length(rest(*l))]]]

CGLF: [function length (list *l, natural *n)

[IF: [?l]->(EQ)->[list:nil] [THEN: [?n]->(EQ)->[number:0]]

[ELSE: [?l]-><rest>->[list]-><length>->[natural]-><plus1>->[?n]]]

CGIF: [function length (list *l, natural *n)

[IF: (EQ ?l nil) [THEN: (EQ ?n [number:0])]

[ELSE: (rest ?l [list:*l2])(length ?l2 [natural:?n2])(plus1 ?n2 ?n)]

]]

KIF: (deffunction length (?l)

:= (if (= ?l nil) 0 (if (list ?l) (1+ (length (rest ?l))))))

KIF also has built-in operators (listOf, setOf) to assemble/decompose lists and
sets; e.g.: (deffunction first (?):= (if (= (listof ?x @items) ?l) ?x).
CGLF and CGIF need to be extended with such operators.

12 Conclusion

We have shown how FE, FCG, CGLF and KIF can be used in various knowledge
representation cases, highlighted some problems of CGLF and CGIF for knowledge
representation, exploitation and exchange, and proposed intuitive notations (FE,
FCG and FO) covering at least all the presented cases. Although these high-level
notations are unlikely to be widely adopted, they show some ways to improve CGIF,
CGLF or other notations in readability, expressiveness and “knowledge normalizing
effect”. They also provide an alternative to graphic notations such as CGDF which
suffer from similar problems as CGLF plus the need for specialized tools (graphic
notations are not easy to mix and hyperlink with text in documents).

Compared to FE, other controlled English notations are often less formal, e.g.
ClearTalk, but closer to English, e.g. Attempto Controlled English [5]. Hence, they
are easier to use but permit less (no functions, no categories from different authors
or ontologies, etc.) and interpret more. By allowing adjectives, adverbs and verbs,
they also do not lead the user to write more explicit and comparable statements [6].
FE and FCG encourage the users to adopt the lexical and ontological conventions
that we proposed in [6] to improve knowledge representation and sharing.

We are now working on the import and export of FE, FCG, CGLF, KIF and
RDF/XML in WebKB-2, along the lines presented in this article. More information
can be found, and testing can be done, at WebKB’s site (www.webkb.org).

References

1. The CG specification. http://users.bestweb.net/˜sowa/cg/cgstand.htm
2. The KIF specification. http://logic.stanford.edu/kif/dpans.html

See also: http://www-ksl.stanford.edu/knowledge-sharing/kif/
3. The RDF specification. http://www.w3.org/TR/REC-rdf-syntax/
4. The Knowledge Machine specification. http://www.cs.utexas.edu/users/mfkb/km.html
5. Fuchs, N.E., Schwertel, U., Torge, S.: Controlled Natural Language Can Replace First-

Order Logic. In Proc. of ASE’99, 14th IEEE International Conference on Automated
Software Engineering, Cocoa Beach, Florida, 1999.

6. Martin, Ph.: Conventions and Notations for Knowledge Representation and Re-
trieval. In Proc. of ICCS 2000, 8th International Conference on Conceptual
Structures, Springer Verlag, LNAI 1867, Darmstadt, Germany (2000) 41–54.
http://www.webkb.org/doc/papers/iccs00/
See also the FE and FCG grammars at http://www.webkb.org/doc/F languages.html

7. Martin, Ph., Eklund P.: Large-scale cooperatively-built heterogeneous KBs. In
Proc. of ICCS 2001, 9th International Conference on Conceptual Structures,
Springer Verlag, LNAI 2120, Stanford University, California (2001) 231–244.
http://www.webkb.org/doc/papers/iccs01/

8. Sowa, J.F.: Conceptual Graphs Summary. In: Nagle, Nagle, Gerholz, Eklund (eds):
Conceptual Structures: Current Research and Practice, Ellis Horwood (1992) 3–51.

9. Sowa, J.F.: Relating Diagrams to Logic. In Proc. of ICCS’93, Springer Verlag,
LNAI 699, Laval, Quebec (1993), 1–35.

