Knowledge representation in RDF /XML, KIF,
Frame-CG and Formalized-English

Philippe Martin

Distributed System Technology Centre
Griffith University - PMB 50 Gold Coast MC, QLD 9726 Australia
philippe.martin@gu.edu.au

Abstract. This article shows how RDF/XML, KIF, Frame-CG (FCG)
and Formalized-English (FE) can be used in a panorama of knowledge
representation cases. It highlights various inadequacies of RDF /XML, ad-
vantages provided by high-level expressive notations (FCG and FE), and
the KIF translations provide a logical interpretation for the other notations.
Knowledge providers may see this document as a guide for knowledge rep-
resentation. Developers may see it as a list of cases to take into account for
their notations and inferences engines. We are working to make our tool,
WebKB-2, import and export in these notations.

1 Introduction

A knowledge-based system (KBS) generally uses only one model to store and ex-
ploit knowledge, e.g. a semantic network model such as Conceptual Graphs (CGs)
[1] or the Resource Description Format (RDF) [4], but may import/export (i.e.
accept/present) representations in various notations, e.g. KIF (Knowledge Inter-
change Format) [2] or RDF/XML (the XML linearization of RDF) [4]. Are some
notations better than others for knowledge representation and exchange?
Expressivity is one criteria. Indeed, the more a notation has “features”, the
more information can be entered precisely and then exploited for inferencing and
exchanged (since the “keywords” for the features are standard). As is usual in the
KIF/RDF /XML worlds, an inference engine is not obliged to take into account all
the features of a notation and perform all the logical deductions. What inferencing
is done is an application choice. Hence, the issues of completeness and decidability
are not related to notations but to inference engines. A limited notation such as
RDF /XML seriously and arbitrarily limits knowledge sharing and usability.
Conciseness and readability are other desirable criterias for a notation since
they ease the understanding of knowledge (and for developers, ease implementation
and debugging). Knowledge entering easiness is a criteria related to conciseness
and how high-level the notation is, i.e. how many ontological distinctions have a
special intuitive syntax. Also related and important is the knowledge normalizing
effect of the notation: the fewer choices a knowledge provider has for representing a
piece of information, the more easily and safely this representation can be automat-
ically related and compared to other ones. Thus, high-level expressive notations

seem better for knowledge representation and exchange than low-level expressive
notations such as KIF, or low-level restricted notations such as RDF /XML.

In the Semantic Web community, although the need for higher-level notations
than RDF /XML is recognized!, XML is most often used as linearization format.
For example, Tim Berners-Lee writes that his Notation3 is “not as an alternative
to RDF’s XML syntax which has the advantage that it is in XML”2. One may
wonder what this advantage is since he also acknowledges that most notations
may be “web-ized”3 by using URIs for category identifiers. Even if knowledge
can be represented in XML, it is unlikely that XML objects are directly used by
advanced inference engines, and that knowledge providers read or write XML-
based languages. Hence, translations to and from XML are necessary and likely
to be the cause of information loss and errors in softwares. From a syntactical
viewpoint, the use of a Lisp-based notation (e.g. KIF) as a general low-level in-
terlingua makes more sense because Lisp is concise and has adequate quotation
(i.e contextualization) features. From any viewpoint we can think of, the use (and
ideally, the standardization) of a high-level expressive notation makes even more
sense since then knowledge is easier to write, read, compare, exchange and exploit.
Being readable and not XML-based, knowledge representations can also be mixed
and hyperlinked with text and images within HTML /XML documents (our tools
WebKB-1[8] and WebKB-2[10] exploit such documents).

From the knowledge provider’s viewpoint, the main problem is how to express
knowledge. Documentations about notations often only provide a grammar, a few
simple examples, and omit to explain how to represent more complex cases com-
monly found in natural language sentences, or to state that some of these cases
cannot be represented. For example, the RDF /XML documentation [4] is currently
very poor. The documentation of KIF is completed by the Ontolingua library* but
several knowledge representation cases are still difficult to find.

This article presents a panorama of knowledge representation features® and
shows how various notations can be used (or extended to be used) to cover these
features. In addition to RDF /XML and KIF, this document presents two notations
derived from CGLF [11], and designed to be as intuitive® as possible in all the
presented cases: Formalized English (FE) and Frame-CG (FCG) [9] 7. Knowledge
providers may see this document as a guide for knowledge representation. KBS
developers may see it as a list of cases to take into account. Language developers

! http://www.w3.org/Designlssues/Logic.html

2 http://www.w3.org/Designlssues/Notation3.html

3 http://www.w3.org/Designlssues/RDFnot.html

* http:/ /www-ksl-svc.stanford.edu:5915/

5 Only “logical features”; see http: //www.webkb.org for ontological examples.

5 The use of English articles or expressions as (extended) quantifiers, one of our ideas
to obtain a more intuitive and “knowledge normalizing” notation, was also applied
(although to a less extent) in KM, the Knowledge Machine notation [3].

7" WebKB-1, our first Web-based KBS, imports and exports CGLF, FCG and FE.
WebKB-2 [10] currently only uses FCG and partially exports in RDF /XML, but will
later also import and export in FE, CGIF and KIF. Grammars and parsing examples
of these notations are at: http://www.webkb.org/doc/grammars/

may see it as a workbench for comparing their notations to others. The KIF
translations also provide logical interpretations for the other notations.

In the RDF/XML example of this article, we follow the RDF lexical conven-
tions (intercap style, first letter of class identifiers in uppercase)® and the RDFS
[5] and DAML4OIL [6] schemas. For the other notations, we follow more appro-
priate lexical conventions (e.g. singular nouns, English spelling) and ontological
conventions that we have advocated in [9] for knowledge comparison, retrieval
and exchange. Except in Section 11 (which deals with category declaration) the
categories used in the examples are supposed to be declared (and, for the RDF
representations, declared in the same RDF document).

2 Conjunctive Existentially Quantified Sentences

Here is an example of such simple forms of knowledge. “E” is for “English”.

E: Tom owns a dog that is not Snoopy.

FE: Tom is owner of a dog different_from Snoopy.

FCG: [Tom, owner of: (a dog != Snoopy)]

KIF: (exists ((7x dog)) (and (owner ?x Tom) (/= ?x Snoopy)))

RDF: <Dog><owner><rdf:Description about="#Tom"/></owner>
<daml:differentIndividualFrom resource="#Snoopy"/></Dog>

3 Contextualization

Contexts allow us to represent statements over statements. Contexts are repre-
sented via delimitors (e.g. *..." in FE, [...] in FCG, ’(...) and “(...) in KIF) or
keywords (e.g. aboutEach in RDF).

E: Tom believes Mary now likes him (in 2002) and before she did not.
FE: Tom is believer of ‘¢ *p ‘Mary is liking Tom’ at time 2002’
and is believer of ‘!xp is before 2002’.
FCG: [Tom, believer of: [*p [Mary, agent of:(a liking,object:Tom)], time:2002],
believer of: [!*p, before: 2002]]
KIF: (exists (7p)
(and (= 7p ’(exists ((7x liking)) (and (agent *1 Mary) (object 71 Tom))))
(believer ~(time ,7p 2002) Tom) //’,7p’->the value of 7p is quoted
(believer ~(before (mot ,7p) 2002) Tom)))
RDF: <rdf:Description bagID="p">
<Liking><agent><rdf :Description about="#Mary"/></agent>
<object resource="#Tom"/></Liking></rdf:Description>
<rdf :Description bagID="not_p" aboutEach="#p" truth ="false"/>
<rdf:Description bagID="now" aboutEach="#p" time ="2002"/>
<rdf :Description bagID="past" aboutEach="#not_p" before="2002"/>
<rdf:Description aboutEach="#now"><believer resource="#Tom"/>
</rdf :Description>
<rdf:Description aboutEach="#past"><believer resource="#Tom"/>
</rdf :Description>

8 http://www.w3.org/ TR/REC-rdf-syntax/#usage

A problem with the above RDF sentence is that the truth property was in-
vented by [7] but is not in the RDF/RDFS standard nor in DAML4-OIL.

Relations of type believer, time and before connect an instance of the type
situation to another object. In CGs, it is customary to distinguish the “proposi-
tion” stated by a sentence/graph/formula from the “situation” described by this
proposition. However, making this distinction is sometimes difficult for inexperi-
enced people, and it is inconvenient because it leads to adding several interme-
diary contexts. Since these intermediary contexts can be automatically inserted
by a parser (thanks to the signatures of the used relations), we have not included
these intermediary contexts in the above example. (We also assumed parsers can
understand that 2002 is a date, again thanks to relation signatures).

In FE and FCG, variables may be prefixed by ’?” or "*’ (or @’ for collections,
as in KIF). When a variable is first used in a graph, it must be associated with a
type and a quantifier. When, within a graph, a variable re-use exists in a context
(c1) different from the context (c2) where the variable has been introduced, the
convention is that the variable is assumed to have been introduced in the minimum
upper context embedding ¢l and c2.

FE and FCG also permit the introduction of free variables with the prefix **’.
Their semantics are the same as in KIF: within statements (as opposed to queries),
these variables are assumed to be introduced and universally quantified in some
upper context (again, the lowest context that includes all the introductions and
re-uses of the variables).

4 Universal Quantification

E: Animals have exactly one head.
FE: Any animal has for part 1 head.
FCG: [any animal, part: 1 head]
KIF: (forall ((7a animal)) (existsl ’?h (and (head ?h) (part 7a ’7h))))
RDF: <rdf:Property ID="headPart">
<rdfs:subProperty0f resource="#part"/><rdfs:range resource="#Head"/>
</rdf :Property>
<rdfs:Class rdf:about="#Animal">
<rdfs:subClass0f><daml:Restriction daml:cardinality="1">
<daml:onProperty resource="#headPart"/>
</daml:Restriction></rdfs:subClass0f></rdfs:Class>

Here is our KIF definition of exists1:
(defrelation existsl (7var 7predicate) :=

(truth ~(exists (,7var) (and (,7predicate ,?7var)
(forall (?y) (=> (,7predicate ?y) (= ,?var 7y)))))))

The RDF representation was derived from an example in the DAML~+OIL doc-
umentation. However, this representation uses a category definition (for Animal)
instead of a sentence with a universal quantifier. As explained in the KIF standard

[2], “definitions have no truth values in the usual sense; they are so because we say
that they are so”. Because RDF and RDFS plus DAML+OIL have no universal

quantifier and because definitions are easier to handle than universal quantifier,
it is best to overlook this subtle distinction in the RDF representation. A more
general construct is proposed in the next section.

Another problem of this RDF representation is that it contains a declaration
of the relation headPart. We would have liked to use a lambda abstraction (i.e.
an anonymous category definition) instead but Restriction can only be used for
defining an anonymous concept type, not an anonymous relation type.

5 Lambda Abstraction, Percentage, Possibility, Valuation

E: At least 93}, of healthy birds can fly.
FE: At least 93% of [bird with chrc a good health] can be agent of a flight.
FCG: [at least 93} of (bird, chrc: a good health), can be agent of: a flight]
KIF: (defrelation healthy_bird (7b) :=

(exists ((?h health)) (and (bird ?b) (chrc ?b ?h) (measure 7h good))))

(forAtLeasthercent 93 ’?x healthy_bird

(exists ((7f flight)) (physical_possibility (agent 7f ’7x))))

RDF: <forall var="#b" at_least percent="93%">
<exists var="h">

<if><Bird about="#Db"><chrc><Health about="#h"><measure resource="#good"/>

<Health></chrc></Bird>
<then><exists var="f">
<Flight about="#f"><agent can resource="#b"/></Flight>
</exists></then></if></exists></forall>

Here is our KIF definition of forAtLeastNpercent (and associate functions):
(defrelation forAtLeastNpercent (?n ?var 7type 7predicate) :=
(exists ((?s set))
(and (truth ~(forall (,?var) (=> (member ,?var ,?s) (,?7type ,7var)))
(>= (numMembersSuchThat ,?s ,7predicate) (/ (* (size ,7s) ?7n) 100)))))

(define-function numMembersSuchThat (7set ?p) :-> 7num :=
(if (and (set 7set) (predicate ?7p)) (numElemsSuchThat (listOf 7set) ?7p)))

(define-function numElemsSuchThat (?list ?p) :-> ?num
(cond ((null ?7list) 0)
((list 71list) (if 7p (1+ (numElemsSuchThat (rest 7list) 7p))))))

We have not found a simple way to represent a lambda-abstraction (that is, an
anonymous type declaration) in KIF. Hence, we have used a normal type declara-
tion.

The above “RDF” sentence actually does not follow the RDF /XML grammar.
It re-uses the forall and exists constructs that were invented by Berners-Lee
in 1999 [7] to represent universal quantification but which were not included in
RDF. We added the attributes percent and at_least to the forall construct.
The insertion of the keyword/attribute can into a relation is also an extension of
RDF and RDF/XML.

The above example can be modified to refer to “most birds” instead of “93%
of birds”. In FE and FCG, the keyword most may be used. It is equivalent to
at least 60% (hence, it can be represented in KIF in this form).

6 Negations, Exclusions and Alternatives

We have already seen two forms of negation: one involving a different_from re-
lation (differentIndividualFrom in DAML+OIL, /= in KIF), and one involving
the negation of a sentence (“not” in KIF). This last form is more difficult to exploit
by inference engines and leaves room for ambiguity. For example, “Tom does not
own a blue car” may mean that “Tom has a car but not blue” or “Tom does not
have a car”. Thus, it is better to use the first form, or break sentences into smaller
blocks connected by coreference variables to reduce or avoid ambiguities.
Here is a variant of the first form: negation on types.

E: Tom owns something that is not a car.
FE: Tom is owner of a !car.
FCG: [Tom, owner of: a !car]

KIF: (exists (7type 7x) (and (owner ?7x Tom) (holds 7type 7x) (/= 7type car)))
RDF: <rdf:Description ID="x">
<owner><rdf :Description about="#Tom"/></owner>
<rdf:type><rdf:Description ID="aType">
<daml:differentIndividualFrom resource="car"/>
</rdf:Description></rdf:type></rdf :Description>
<!l-- "disjointWith" may be used instead of "differentIndividualFrom" -->

Exclusion between objects (and hence, some forms of negation) may also be
represented via collections of exclusive objects. RDFS proposes an alt collection
to store alternatives but unfortunately does not specify if this "or” is inclusive
or exclusive. Specializing alt by or_bag and xor_set seems a good idea even
if RDF parsers are unlikely to take advantage of this distinction. However, the
current RDF /XML grammar only permits to define members (using 11 relations)
to collections of types Bag, Alt and Seq, not specializations of these types.

FE and FCG use OR-collections and XOR-collections as a syntactic mean to
store “or” and “xor” relations between objects (types, instances or sentences).
This can be done in RDF too (however, to store exclusion relations between cate-
gories, it is better to use the DAML relations disjointWith, complement0f and
inverse0f). Here is an example of OR-collection between instances. (Note: red,
yellow and orange are not instance but subtype of color, and have many sub-
types, e.g. crimson, dark_red and chrome_red. Their instances are the actual
occurrences of color that physical objects have.)

E: Tom’s car is red, yellow or orange.
FE: Tom is owner of a car that has for color OR{a red, a yellow, an orangel}.
FCG: [Tom, owner of: (a car, color: OR{a red, a yellow, an orangel})]
KIF: (exists ((?x car) 7c)
(and (owner ?x Tom) (color ?x ?c) (or (red 7c)(yellow 7c) (orange 7c))))
RDF: <Car><owner><rdf:Description about="#Tom"/></owner>
<color><rdf:Description>
<rdf :type><rdf :Alt><rdf:1i resource="#Red"/>
<rdf:1i resource="#Yellow"/>
<rdf:1i resource="#0range"/></rdf:Alt>
</rdf:type></rdf :Description></color></Car>

In this example, it would have been simpler to use a type such as warm_color
instead of the OR-collection of red, yellow and orange (and this form makes
inferencing easier). More generally, this section shows that a negation can be rep-
resented in numerous ways and that these representations are difficult for an in-
ference engine to compare and hence exploit fully. Both for knowledge exchange
with frame-based systems and for knowledge inferencing, different_from rela-
tions between categories should be prefered to other forms of negations.

7 Collections and Quantifier Precedence

Collections have been introduced in the previous section and via examples using
numerical quantifiers. In this section, we show how various interpretations of the
English sentence “/ persons have approved 3 resolutions” (and some variations of
it) can be interpreted. By studying how to represent relations between members
of two simple collections, we illustrate the importance of specifying how a col-
lection must be interpreted, and show how to handle complex cases of quantifier
precedence (between numerical, existential and universal quantifiers).

The sentence “4 persons have approved 3 resolutions” is ambiguous. The 4 per-
sons may have individually or collectively approved 3 resolutions (the same 3 or
not), and “collectively” may have two meanings: the participation in a “unique”
approval act or the approval of “most” of the resolutions (or a combination of both
as illustrated in the last example of this section). In this paper, “persons acting
together/collectively” means that “there exists an act and each of the persons is
an agent of that act”. This interpretation of “collectiveness” was used by Sowa
in [11] and, in CG terminology, it implies that the act must be represented by a
concept node, not by a relation node (this has not been made explicit by Sowa).

In CGs [11], any collection in a concept node of a CG can be specified as
having a distributive interpretation (each member of the collection individually
participates to the relations associated with the node), a collective interpretation
(the members collectively participate in the relations associated with the node), a
defaut interpretation (an unspecified mix of collective and distributive interpreta-
tion) or a cumulative interpretation (the relations are about the collection itself).

RDF permits the distributive interpretation (or is it the default interpreta-
tion?) via the keyword aboutEach. Without this keyword, relations are about the
collection itself (cumulative interpretation). However, the authors of RDF also
represent the collective interpretation via direct relations to a bag (see Section 3.5
of [5]). This ambiguity can often be repaired by RDF parsers thanks to the signa-
tures of the relations (if the expected type is not a collection, this is the collective
interpretation, otherwise the ambiguity remains). Hence, we have not introduced
a new keyword for specifying the collective interpretation in the following exam-
ples. However, we have introduced the concept type set and the relation type
size since neither RDF, RDFS nor DAML4OIL propose equivalent categories.
The type set is declared as a subtype of rdf :Bag to permit the use of aboutEach.

The first example keeps the ambiguity of the above sentence (both collections
have the default interpretation). The ‘s’ at the end of persons and resolutions

in the FE and FCG representations are supposed to be automatically removed
(WebKB-2 does this when a numerical or universal quantifier is involved). To
highlight the logical interpretations, this section provides predicate logic (PL)
translations instead of FE translations.

E:

FCG:
KIF:

RDF:

PL:

4 persons have (each/together) approved 3 resolutions.
[4 persons, agent of: (an approval, object: 3 resolutions)]
(forAllN 4 ’?p person (forAllN 3 ’?r resolution
(exists ((?a approval)) (and (agent 7a ’?p) (object ?a ’7r)))))

<Set ID="Persons"><size>4</size></Set>
<forall var="p">

<if><Person about="#p"/><member0f resource="#Persons"/></Person>

<then><Set ID="Rs"><size>3</size></Set>

<forall var="r">

<if><Resolution about="#r"><memberOf resource="#Rs"/></Resolution>

<then><exists var="a">
<Approval about="#a"><agent resource="#p"/>
<object resource="#r"/></Approval>
</exists></then></if></forall></then></if></forall>
Jps set(ps) A size(ps,4) AVp € ps Trs set(rs) A size(rs,3) AVr € rs
Ja approval(a) A agent(a,p) A object(a,r)

For modularity, we have introduced the “quantifier” forAl1N.

(defrelation forAllN (7num ?var 7type 7predicate) :=
(exists ((7s set)) (and (size 7s 7num)

(truth ~(forall (,?var) (=> (member ,?var ,?s)

(and (,7type ,?var) ,?predicate)))))))

In FE and FCG, the order and scope of the quantifiers follow the order and

structure of the graphs. The RDF standard does not specify how to delimit order
and scope of quantifiers because the only direct form of universal quantification
it has is via RDF representations using aboutEach. The next example shows a
simple inversion of the quantifier scopes.

E:

FCG:
KIF:

RDF:

PL:

3 resolutions have been approved by 4 persons (each/together).
[3 resolutions, object of: (an approval, agent: 4 persons)]
(forAllN 3 ’?r resolution (forAllN 4 ’7p person
(exists ((?a approval)) (and (agent 7a ’?p) (object ?a ’7r)))))
<Set ID="Rs"><size>3</size></Set>
<forall var="r">
<if><Resolution about="#r"/><member(0f resource="#Rs"/></Resolution>
<then><Set ID="Persons"><size>4</size></Set>
<forall var="p">
<if><Person about="#p"><memberOf resource="#Persons"/></Person>
<then><exists var="a'">
<Approval about="#a"><agent resource="#p"/>
<object resource="#r"/></Approval>
</exists></then></if></forall></then></if></forall>
Irs set(rs) A size(rs,3) AVr € rs Ips set(ps) A size(ps,4) AVp € ps
Ja approval(a) A agent(a,p) A object(a,r)

In FE and FCG, the collective interpretation is specified via the keywords
together, group of, set of, bag of, 1list of, sequence of or alternatives
(the first three are synonyms; in this paper, we most often use set to save space).

If we take the two previous examples and gradually introduce the collective
interpretation for the collections, we obtain five different logical interpretations
(instead of six because when both collections are collectively interpreted, the in-
version of quantifier scopes does not change the meaning). Below are three of these
combinations (the other two are: “A group of 3 resolutions has been approved by
4 persons” and “A group of 4 persons has approved 3 resolutions”). In the third
case, we give the three equivalent FCG sentences and a tentative RDF represen-
tation using aboutEach. For the other cases, using aboutEach is not possible, the
forall and exists constructs have to be used (in the same order as in PL).

E: 4 persons have (each/together) approved a group of 3 resolutions.
FCG: [4 persons, agent of: (an approval, object: a set of 3 resolutions)]
KIF: (forAllN 4 ’7p person (exists ((?rs set) (7a approval))

(forAllIn ?rs 3 ’?r resolution (and (agent 7a ’7p) (object ?7a ’?r)))))
PL: dps set(ps) A size(ps,4) AVp € ps Trs set(rs) A size(rs,3) A

Ja approval(a) Vr € rs agent(a,p) A object(a,r)

E: 3 resolutions have been approved by a group of 4 persons.
FCG: [3 resolutions, object of: (an approval, agent: a set of 4 persons)]
KIF: (forAllN 3 ’?r resolution (exists ((7ps set) (7a approval))
(forAllIn ?7ps 4 ’7p person (and (agent 7a ’7p) (object 7a ’?7r)))))
PL: 3Jrs set(rs) A size(rs,3) AVr € rs Ips set(ps) A size(ps,4) A
Ja approval(a) Vp € ps agent(a,p) A object(a,r)

E: A group of 4 persons has approved a group of 3 resolutions.

FCG: [a set of 4 persons,agent of:(an approval,object:a set of 3 resolutions)]
or: [a set of 3 resolutions,object of:(an approval,agent:a set of 4 persons)]
or: [an approval, agent: a set of 4 persons, object: a set of 3 resolutions]

KIF: (exists ((7r approval) (7ps set) (7rs set))

(forAllIn 7ps 4 ’7p person (forAllIn ?rs 3 ’7r resolution
(and (agent ?a ’?p) (object ?a ’?r)))))
RDF: <Set ID="Persons'"><size>4</size></Set>
<Set ID="Resolutions"><size>3</size></Set>
<rdf:Description aboutEach="#Persons"> <rdf:type resource="#Person"/>
<agent0f><Approval><object><rdf:Description aboutEach="#Resolutions"/>
</object></Approval></agent0f></rdf:Description>
PL: da approval(a) A 3ps set(ps) A size(ps,4) A rs set(rs) A size(rs,3) A
Vp € ps Vr € rs agent(a, p) A object(a,)

Here is how we define the “quantifier” forAllIn.
(defrelation forAllIn (?s 7num ?7var 7type 7predicate) :=
(and (size ?s ?num) (truth ~(forall (,?var) (=> (member ,?var ,?7s)
(and (,7type ,?var) ,?predicate))))))

The RDF/XML syntax is so poor that it requires the use of a type agentOf
which must be defined as inverse of agent. This is un-natural and time-consuming
for the user, and imposes additional work to inference engines.

In FE and FCG, the distributive interpretation is specified via the keyword
each. If we introduce the collective interpretation into the previous seven com-
binations, we obtain nine different logical interpretations. Here are two of them
(again, the RDF /XML representations would have to use forall and exists con-
structs in the same order as in the KIF or PL representations).

E: 4 persons have each approved 3 resolutions.
FCG: [each of 4 persons, agent of: (an approval, object: 3 resolutions)]

KIF: (forAllN 4 ’7?p person (existslFor ’7p ’7rs set (forAllln ’7rs 3 ’?r resolution

(existslFor ’7p ’7a approval (and (agent ’7a ’7p) (object ’?a ’?r))))))
PL: dps set(ps) A size(ps,4) AVp € ps rs set(rs) A size(rs,3) AVr € rs
AMa approval(a) A agent(a, p) A object(a,r)

E: 4 persons have each approved a group of 3 resolutionmns.
FCG: [each of 4 persons,agent of:(an approval,object:a set of 3 resolutions)]

KIF: (forAllN 4 ’7p person (existslFor ’7p ’7?rs set (existslFor ’7p ’7a approval
(forAllIn ’7rs 3 ’7r resolution (and (agent ’7a ’7p) (object ’7a ’7r))))))

PL: dps set(ps) A size(ps,4) AVp € ps llrs set(rs) A size(rs,3) A
Ala approval(a) Vr € rs agent(a, p) A object(a,r)

Below is our KIF definition of exists1For (3!!). This quantifier permits us to
specify that the persons are agent of different approvals and different resolutions
(first example above) or groups of resolutions (second example above).
(defrelation existslFor (?varl ?var2 7type 7predicate) :=

(truth ~(exists (,?var2)
(and (,7type ,7var2) (,7predicate ,?varl ,7var2)
(forall (7x) (=> (,7predicate ,?varl 7x) (= ,7var2 7x)))
(forall (7y) (=> (,7predicate ?y ,?var2) (= ,%varl ?y)))))))

Finally, we can also introduce “most” as an interpretation of collectiveness
in each of the previous (749=16) combinations (hence, 16 logical interpretations
again). Here is one of them.

E: A group of 3 resolutions has been approved by most in a group of 4 persons.

FCG: [a group of 4 persons, agent of:
(an approval, object: most in a group of 3 resolutions)]
or: [most in a group of 3 resolutions, object of:
(an approval, agent: a group of 4 persons)]
KIF: (exists ((7r approval) (7ps set) (7rs set))
(forAllIn 7ps 4 ’7p person (forMostIn ?rs 3 ’7r resolution
(and (agent 7a ’7p) (object 7a ’?r)))))
PL: Ja approval(a) A Tps set(ps) A size(ps,4) A Trs set(rs) A size(rs,3) A
Vp € ps agent(a,p) A ImostO frs set(mostO frs)
(Vr € rs (object(a,r) => r € mostO frs)) N size(mostO frs) >= 2
// >=2 since size(rs)/2 =1.5
Here is how we define forMostIn.
(defrelation forMostIn (7set 7num 7var 7type 7predicate) :=
(and (size 7?set 7num)
(truth ~(forall (,?var) (=> (member ,?var ,7set) (,7type ,7var))))
(>= (numMembersSuchThat ,?7set ,7predicate) (* (size ,?set) 0.60))))

8 Intervals

E: Tom has been running for 45 minutes to an hour.
FE: Tom is agent of a run with duration a period with part 45 to 60 minutes.
FCG: [Tom, agent of: (a run, duration: (a period, part: 45 to 60 minutes))]
KIF: (exists ((?r run) (7p period) (7minutes set))
(and (agent ?r Tom) (duration ?r 7p)
(forAllIn ?7minutes 45 60 ’?m minute (part 7p ’7m))))
RDF: <Run><agent resource="#Tom"/><duration><Period ID="p"/></Run>
<Set ID="Minutes"><minSize>45</minSize> <maxSize>60</maxSize></Set>
<rdf:Description aboutEach="#Minutes">
<rdf:type resource="#Minute"/> <part0f resource="#p"></rdf:Description>

Here is how we define forAllInBetween.
defrelation forAllInBetween (?s 7nl 7n2 7var 7type 7predicate) :=
(exists (?n) (and (size ?s 7n) (>= 7n 7nl1) (=< ?n 7n2)
(truth ~(forall (,?var) (=> (member ,7var ,7s)
(and (,?type ,7var) ,?predicate))))))

In all these notations, a concept node of type period had to be introduced since
the minutes participate in the same period/duration. This is the same problem as
the collective participation to an act: the act cannot be represented as a relation
node. Here, a relation of type duration cannot directly connect the run to the
minutes. However, we only became aware of this problem when trying to produce
the KIF representation.

9 Function Calls and Lists

Special syntactic sugar to distinguish functional relations from other relations is
not mandatory since this distinction can be specified in the relation type declara-
tion (hence, we assume that all notations permit function calls even if they do not
permit function definitions). However, a syntactical difference eases readablility
and syntactic checking. The following example involve two functions (length, +)
and one relation (<).

E: The length of the list "Tom, Joe, Jack" plus 1 is less than 5.
FE: length(LIST{Tom, Joe,Jack}) + 1 < 5.
FCG: [length(LIST{Tom,Joe,Jack}) + 1 < 5]
KIF: (superior (+ (length (listof Tom Joe Jack)) 1) 5)
RDF: <rdf:Seq><rdf:1i resource="#Tom"/><rdf:1i resource="#Joe"/>
<rdf:1i resource="#Jack"/>
<length><Number ID="1"><length></rdf:Seq>
<plus> <argl resource="#1"> <arg2>1</arg> <arg3><Number/></arg3> </plus>

A problem with the RDF/XML notation is that length, plus, argl, arg2
and arg3 are not declared in RDF/RDFS/DAML+OIL.

In FE and FCG, the notation for functional relations can also be used for
representing relations which are not binary.

10 Higher-order Statements

Higher-order statements are needed to quantify over types. For example, a first-
order statement can describe the transitivity of a particular relation (e.g. “the part
of a part is also a part”) but a second-order statement is required for describing
in general what a transitive relation is. Since definitions will be presented in the
next section, the next example uses the characteristic transitivity instead of
defining a type such as transitive_binary_relation.
E: If a binary relation type rt is transitive
then if x is connected to y by a relation of type rt, and
y is connected to z by a relation of type rt,
then x is connected to z by a relation of type rt.
FE: If ‘a binaryRelationType “rt has for chrc the transitivity’
then ‘if ‘"x has for “rt "y that has for “rt "z’
then ‘“x has for “rt "z’ ’. //rt,x,y,z are free variables
FCG: [[a binaryRelationType “rt, chrc: the transitivity] =>
[["x, "rt: (Cy, “rt: "z)] => ["x, "rt: "z] 1]
KIF: (exists ((7t transitivity))
(forall ((?rt binaryRelationType) ?x 7y 7z)
(=> (chrc ?rt 7t)
(=> (and (holds ?7rt ?x ?7y) (holds ?rt ?y ?7z)) (holds ?rt 7x 7z)))))
RDF: <forall var="r" v2="x" v3="y" v4="z"> <!-- v2,v3,v4: new attributes -->
<if><rdf :Description about="#rt"><chrc><transitivity/></chrc>
</rdf:Description>
<then><if><rdf:Description about="#x">
<rdf:property pname="#rt"><!-- pname: new attribute -->
<rdf:Description about="#y">
<rdf :property pname="#rt"><rdf:Description about="#z"/>
</rdf :property></rdf:Description>
</rdf :property></rdf:Description>
<then><rdf:Description about="#x">
<rdf:property pname="#rt"><rdf:Description about="#z"/>
</rdf :property></rdf:Description>
</then></if></then></if></forall>

To permit a variable to refer to a relation type, the RDF sentence uses another
extension to XML from [7]: the pname attribute. The additional variable names
v2, v3, v4 in the forall construct also come from Berners-Lee.

The FE and FCG representations need not use universal quantifiers: the lo-
cation of the re-use of the relation type rt (i.e. within a relation node) specifies
there is a mapping from rt to a free variable referring to a relation of type rt.

11 Declarations and Definitions

In RDF /XML, a category is uniquely identified by a URI, e.g. http://www.foo.com
and http://www.bar.com/doc.html#car. In a multi-user KBS such as WebKB-2
[10], user identifiers are more convenient knowledge source identifiers than doc-
ument URIs. Thus, in WebKB-2, a category identifier may be a URI, an e-mail

address or the concatenation of a source identifier and a key name, e.g. wn#dog
and pm#IR_system (“wn” refers to WordNet 1.7 and “pm” is the login name of
the user represented by the category philippe.martin@gu.edu.au). In this third
case, the category may still be referenced from outside the KB by prefixing the
identifier with the URL of the KB, e.g. http://www.webkb.org/kb/wn#dog.

This identifier encoding is used for all the input/output notations in WebKB-2
(FCG, FE, KIF, CGIF) except for RDF /XML where URIs have to be used.

In addition to an identifier, a category may have various names (which may
also be names of other categories). In FE and FCG, a category identifier may
show several names, e.g. wn#dog__domestic_dog__Canis_familiaris (at least
two underscores must be used for separating the names).

WebKB-2 proposes a special notation for declaring categories and links (i.e.
second-order relations) between them: the “For Ontology” (FO)? notation. It is
an extension of the special notation used in CGs for specialization links between
types. Hence, in the following example, we use FO instead of FE and FCG.

For the RDF representation, the categories created by the user “pm” are sup-
posed to be declared in the same document (otherwise each referred resource must
be prefixed by “http://www.webkb.org/kb/pm#").

For the KIF representation, we have chosen to use relation types from RDF,
RDFS and DAML+4-OIL (rather than from the Frame-ontology and OKBC-ontology
of the Ontolingua library) to ease the comparison with RDF /XML representations.

FO: pm#thing_ _top_concept_type (“thing that is not a relation”) 29/11/1999

chose (oc fr),

rdfs#class, ! pm#relation, = sowa#T,
> {(pm#situation pm#entity)} pm#thing_playing_some_role;

KIF: (defrelation pm#thing ()) (rdfs#class pm#thing)

(pm#name pm#thing "thing") (pm#name pm#thing "top_concept_type")

(pm#nameWithCreatorAndLanguage pm#thing "chose"
Olivier.Corby@sophia.inria.fr wn#french)

(dc#Creator pm#thing philippe.martin@gu.edu.au)

(dc#Date pm#thing "29/11/1999")

(rdfs#comment pm#thing "thing that is not a relation")

(daml#disjointWith pm#thing pm#relation) (= pm#tthing sowa#T)

(daml#disjointUnionOf pm#thing °’ (pm#situation pm#entity))

(rdfs#subClass0f pm#thing playing_some_role pm#thing)

RDF: <rdfs:Class rdf:about="http://www.webkb.org/kb/pm#Thing">
<rdfs:label>thing</rdfs:label> <rdfs:label>top_concept_type</rdfs:label>
<rdfs:label xml:lang="fr"

dc:creator="0livier.Corby@sophia.inria.fr">chose</rdfs:label>

<dc:Creator>philippe.martin@gu.edu.au</dc:Creator>
<dc:Date>29/11/1999</dc:Date>
<rdfs:comment>thing that is not a relation</rdfs:comment>
<rdf:type resource="http://www.w3.org/TR/rdf-schema#Class"/>
<daml:disjointUnion0Of rdf:parseType="daml:List">

<daml:Class rdf:about="#Situation"/>

<daml:Class rdf:about="#Entity"/></daml:disjointUnion0f>

9 http://www.webkb.org/doc/F _languages.html#FO

<daml:disjointWith resource="#relation"/>
<daml#sameClassAs resource="http://www.webkb.org/kb/sowa#T"/>
</rdfs:Class>
<rdfs:Class rdf:about="#Thing_playing_some_role">
<rdfs:subClass0f rdf:about="#Thing"> </rdfs:Class>

In FO, the creator of a link is left implicit when it is the same as the creator of
the category source of the link. Otherwise, the creator has to be specified within
parenthesis (as illustrated above for the name “chose”). To represent link creators
in the other notations, either relations with arity higher than two must be used
(as illustrated above) or contexts.

“SubtypeOf” links are special cases of definition of necessary conditions for
(being an instance of) the source categories. Here is an example of how more
general cases for the definition of necessary conditions can be represented.

E: According to "pm", by definition, a person has for parent a person.
FCG: [type pm#person (*x) :=> [*x, pm#parent: a pm#person]]
KIF: (defrelation pm#tperson(?p):=>(exists((?p2 pmi#tperson)) (pm#parent ?p 7p2)))
RDF: <rdfs:Class rdf:ID="Person">
<rdfs:subClass0f><daml:Restriction>
<daml:onProperty resource="#parent"/>
<daml:toClass resource="#Person"/>
</daml:Restriction></rdfs:subClass0f></rdfs:Class>

For definitions of sufficient conditions, :<= may be used instead of :=>. In
RDF/XML, the rdfs:subClass0f links must be reversed. For definitions of nec-
essary and sufficient conditions, EQ, := and daml#sameClassAs may be used.

Function definitions do not exist in RDF. We use forall constructs instead,
as suggested by Berners Lee [7].

E: The length of a list is O if the list is empty,
otherwise, 1 + the length of the list without its first element
FCG: [function length (list *1) :-> natural *r
:= [if [1 = nil] then [*r = 0] else [*r = 1 + length(rest(x1))] 1]
KIF: (deffunction length (71)
:= (if (= 71 nil) 0 (if (list ?1) (1+ (length (rest 71))))))
RDF: <forall var="1"><exists var="n">
<if><daml:list about="#1">
<daml:sameIndividualAs
resource="http://www.daml.org/2001/03/daml+oil.daml#nil"/>
</daml:1list>
<then><rdf:Description about="#n">
<daml:sameIndividualAs>0</daml:sameIndividualAs>
</rdf :Description></then>
<else><exists var="12" v2="n2">
<daml:list about="#1">
<rest><daml:list about="#12">
<length><natural about="#n2"><plusl resource="#n"/>
</natural></length></daml:1list>
</rest></daml:list></exists></else></if></exists></forall>

12 Conclusion

We have shown how RDF/XML can be (extented to be) used in various know-
ledge representation cases and we have proposed intuitive notations (FE, FCG and
FO) covering at least all the presented cases. Although these high-level notations
are unlikely to be widely adopted, they show some ways to improve other nota-
tions in readability, expressivity and “knowledge normalizing effect” — for example,
Notation-3, Tim Berners-Lee’s “academic exercise”, which does not (yet) have have
a special syntax for extended quantifiers, collections, functions and definitions.

This article complements the lexical and ontological conventions proposed in
[9] to permit knowledge sharing. We are now working on the import and export
of FE, FCG, KIF and RDF/XML in WebKB-2, along the lines presented in this
article. More information can be found, and testing can be done, on the WebKB
site (www.webkb.org).

References

1. The CG specification. http://users.bestweb.net/ sowa/cg/cgstand.htm

The KIF specification. http://logic.stanford.edu/kif/dpans.html

See also: http://www-ksl.stanford.edu/knowledge-sharing/kif/

The Knowledge Machine specification. http://www.cs.utexas.edu/users/mfkb/km.html

The RDF specification. http://www.w3.org/TR/REC-rdf-syntax/

The RDF Schema (RDFS). http://www.w3.org/TR/PR-rdf-schema/

The DAML+OIL Schema. http://www.daml.org/2001/03/daml+oil.daml

Berners-Lee, T.: The Semantic Toolbox: Building Semantics on top of XML-RDF.

http://www.w3.org/Designlssues/Toolbox.html

8. Martin, Ph., Eklund P.: Knowledge Indexation and Retrieval and the Word
Wide Web. In IEEE Intelligent Systems, special issue ”Knowledge Man-
agement and Knowledge Distribution over the Internet”, May/June 2000.
http://www.webkb.org/doc/papers/www8/www8.ps

9. Martin, Ph.: Conventions and Notations for Knowledge Representation and
Retrieval. In Proc. of ICCS 2000, 8th International Conference on Conceptual
Structures (Springer Verlag, LNAI 1867, pp. 41-54), Darmstadt, Germany, August
14-18, 2000. http://www.webkb.org/doc/papers/iccs00/iccs00.pdf
See also the FE and FCG grammars at http://www.webkb.org/doc/F languages.html

10. Martin, Ph., Eklund P.: Large-scale cooperatively-built heterogeneous KBs. In Proc.
of ICCS 2001, 9th International Conference on Conceptual Structures (Springer Ver-
lag, LNAT 2120, pp. 231-244), Stanford University, California, USA, July 30th to
August 3rd, 2001. http://www.webkb.org/doc/papers/iccs01/

11. Sowa, J.F.: Conceptual Graphs Summary. In: Conceptual Structures: Current Re-
search and Practice (Eds: T.E. Nagle, J.A. Nagle, L.L. Gerholz and P.W. Eklund),
Ellis Horwood (1992), pp. 3-51.

o

N o w

