
Conceptual Structures and Structured Documents
Philippe MARTIN, Laurence ALPAY

INRIA - ACACIA project - BP 93 - 06902 Sophia Antipolis Cedex France
E-mail: phmartin@sophia.inria.fr, L.L.Alpay@open.ac.uk

Abstract. In the first part of this article, we present the benefits of using a structured
document editor forstoring, editing, and structuring knowledge representations, and show
how this can be done for knowledge represented in the Conceptual Graph (CG) formalism. In
structured documents, document elements (DEs) are typed and can be organized by structural
or hypertext links. They can also be shared (included) by other DEs. The organization of DEs
is specified by structure models (Document Type Definitions (DTDs)). A structured document
editor displays documents according to their presentation models and lets the users to edit
them and to structure them in accordance with their DTDs. We have defined DTDs and
presentation models for allowing the storing and display of a CG, a type definition and a
hierarchy of types or CGs. Furthermore, we used the functional interface of the structured
document editor Thot (previously named Grif) (Quint & Vatton, 1992) so that when a CG, a
type definition or a hierarchy is loaded or built in Thot, a similar element is loaded or built in
the base of the CG workbench CoGITo (Haemmerlé, 1995).
In thesecond part of the article, we analyse thesemantics of the different kinds of associations
(by hypertext or structural links)between these knowledge representations and other pieces of
information: contextualization, annotation, representation (we propose constraints on DE repre-
sentations). Then, we give several ways to exploit these associations, using both Thot and
CoGITo, 1) for organizing and retrieving knowledge and/or information, and 2) for combining
searches by navigation on hypertext and structural links, and searches by knowledge-based
queries. This paper does not advice the representation of document abstract structures with CGs.
Keywords: Document Representation, Information Retrieval, Knowledge Acquisition.

1 Introduction
With Conceptual Graphs (Sowa, 1992), information may berepresented in a form
that is logically precise and humanly readable. Structured documentsorganize infor-
mationinto variouselements which aretyped, which can be embedded (i.e. related
by structural links) and which can also be related by hypertext links. The organi-
zation of the elements is represented in an abstract (or logical) structure which must
follow a structure model called the document type definition (DTD). Thepresen-
tation of the elements may be specified in presentation models and various
additional presentation rules may be applied to the elements according to their types.

The abstract structures of documents may be exploited forretrieving, managing
and generating documents or document elements (databases or specialized tools may
be used for this). Information retrieval (IR) may also be done by navigation on struc-
tural or hypertext links between document elements (DEs)1. However, representing

1. A whole document may also be considered as a document element (DE); it can be included
in other DEs or linked to them. Then, from now, for sake of simplicity and generality, "DEs"
also refer to whole documents. And by "information retrieval" (IR) we mean DE retrieval, not
only document retrieval. IR can be done with requests and/or by hypertext-like navigation.

DEs by predefined types (tags, marks), and some of their relations by direct prede-
fined links, is insufficient for high level IR (i.e. semantic, flexible or accurate
enough): more complex structures are needed forindexing the DEs, that is, for
representing their content and their relations in a formal and machine-processable
way. Knowledge-based approaches have now gained attention both in document
retrieval systems (e.g. Croft (1987), Myaeng (1992)) and in hypertext systems (e.g.
Marshall & al. (1991), Nanard & al. (1993)). In this article, we will present a) the
benefits of using the Conceptual Graph (CG) formalism for indexing or representing
the semantic content of DEs, and b) the principles that CGKAT (Martin, 1995), our
knowledge acquisition tool, follows for allowing and guiding such indexations.

The main idea we exploit is that hypertext systems and structured documents
also allow the users tostore, structure and edit not only raw information but also
various knowledge structures, including semantic networks. This knowledge may be
handled via some inference mechanisms implemented on the internal representations
used in these systems, e.g. inheritance and query mechanisms as in MacWeb
(Nanard & al., 1993). DEs (information) may be connected by hypertext links to the
knowledge structures (other DEs) which index them, i.e. which represent or annotate
them in a formal way. Similarly, using structural and hypertext links, knowledge
representations may be associated or mixed with various kinds of information (text,
image, section, etc.), and they may be edited, structured and displayed using the
various facilities of the hypertext system or structured document editor. We have
made this possible with CGKAT : this tool interfaces a structured document editor
with hypertext capabilities (Thot1 (Quint & Vatton, 1992)), with a CG workbench
(CoGITo (Haemmerlé, 1995)).

In the first part of this article, we show the benefits of using a structured
document editor for representing and organizing knowledge, and how we have
enabled this. Then in a second part, we present the principles we have chosen in
CGKAT for enabling and guiding the representation/indexation of DEs with CGs.

2 Organizing Knowledge with a Structured Document Editor
Structured document editors, or markup languages like SGML (ISO 8879), permit the
users toorganize chunks of information (DE) and to associate them with some
minimal machine-processableknowledge (DE representation) such as predefined types
(marks)and attributes of various types (e.g. number, text and hypertext reference). In
addition, using SGML or a similar DTD defining language, the syntax of a knowledge
representation language can often be specified. Thus, a structured document editor
like Thot, can offer an interesting environment 1) for editing knowledge using a
language defined in a DTD, and 2) for associating this knowledge with information2.

1. Thot is the new name of the academic version of Thot since November 1995.

2. Without a structured document editor, it is useless to define a knowledge representation lan-
guage in a DTD, since then a) there is no editing environment, b) the user has to use SGML
tags for representing knowledge, c) a specialized parser could parse this language without
using SGML tags, and it could directly generate adequate representations in memory.

2.1 The Facilities Provided by a Structured Document Editor

A structured document editor like Thot can
1) display DEs of a document according to the chosen presentation model, in one or
several windows (each window may display different kinds of DEs);
2) allow the users to apply specific presentation rules (position, font, color, etc.) to a
DE provided that they are allowed by the chosen presentation model;
3) guide the document edition, first by presenting the empty DEs to fill in, and then
by presenting for each selected DE in a window, a contextual menu which proposes
only the editing commands allowed for the DE;
4) let the users retrieve DEs by hypertext navigation1 or by queries on their types or
attributes.

DEs can beorganized by structural and hypertext links. They may also bereused and
shared by others DEs using the mechanism ofinclusion: an inclusion is a DE which is
a "living copy" of another DE and which is connected to this DE by an hypertext link.
This copy is "alive" in the sense that all changes made in the DE source are automa-
tically reflected in the copy (and therefore cannot be directly modified). Inclusions
may be exploited to build "virtual documents" or "views" on parts of other documents.
Thus structured document editors permit the users to edit and store information in a
modular way. In addition, the document structure may be exploited for a cooperative
and concurrent editing of the same document. Alliance (Decouchant, 1995) is an
application built on the top of Thot which manages such a cooperation.

With a structured document editor like Thot, documents can also beactive: Thot
can call a user-defined function when a DE of a specified type, or one of its attri-
butes, is the object of a specified event (selection, modification, saving, etc.). Thot
provides a C functional interface for enabling user-defined functions to search infor-
mation in the abstract structure and modify it. Thus Thot seems to be a good support
for making an hypermedia interface for an application.

Therefore, in order to edit, access and manage knowledge, it seems an interesting
idea to interface a knowledge base with a structured document editor. This is what
we have done in CGKAT, with Thot and the CG workbench CoGITo2. Our first work
was todefine aDTD and apresentation model for a CG. For this, we have used the S
and P languages3. Our second (much longer) work was to defineC functions to
modify or to exploit the CG base for eachevent on a DE which displays a CG4.

1. Hypertext links are bi-directional: from a DE, all the DEs which refer to it, may be retrieved.

2. CoGITo is a CG workbench like Peirce or CGKEE, and like CGKEE it has a C functional
interface for letting the users build and manipul its internal representations.

3. With the native version of Thot, a DTD and a presentation model are respectively written in
the S and P languages. In the SGML version of Thot, SGML is used instead of S, and in the
future, DSSL (ISO 10179) might be used instead of P.

4. In CGKAT, the KB handling functions are separated from the functions called by Thot. The
latter collect information in the abstract structure, and call the former by a direct function call
or via RPC. Then, if the modification is possible in the CG base, or if the user has requested
information from the knowledge base, the abstract structure is modified.

2.2 Building CGs, Type Definitions and Hierarchies Using Document Elements

Figure 1 shows the main parts1 of ourDTD for a CG and a type definition using a CG.

We now detail this DTD. It specifies that a CG may be 1) alist of concepts or
relations (we have called that a "CGgraph"), or 2) asingle concept (we shall see an
example of the use for such a constrained CG), or 3) a type definition. The body of a
type definition is a CGgraph and the kind of definition is specified by an enumerated
attribute ("DefKind")2. This attribute also lets a user specify that a type definition
must be transformed into a normal CGgraph (the reverse is done in a similar way). A

1. For space and clarity reasons, we have omitted the parts which are not needed for defining
the abstract structure but which needed for the presentation of this structure. If you need the
whole DTD and the related models, contact our team leader Dr Dieng (dieng@sophia.inria.fr).

2. For concept types, we distinguish four kinds of definitions: 1) necessary and sufficient con-
ditions, 2) necessary conditions, 3) sufficient conditions and 4) typical conditions (in Sowa’s
terminology, a definition with typical conditions is called a "schema").

Fig. 1. Main parts of our DTD for a CG (the "..." are omitted parts).

STRUCTURE CG; ... {Structural model for (a DE which displays) a CG} ...
 CG = CASE OF

CGgraph (ATTR CGname =TEXT; Comment =TEXT;
 Toward_elem=REFERENCE(ANY); ...)
 = ConceptOrRel_List ... ;

SingleConcept = CASE OF Concept; ConceptInclusion;END;
TypeDefinition (ATTR ! DefKind = NSC, NC, SC, TC, RelType_def,

 Unspecified, Transform_in_CGgraph;
 ! Completed = Not_yet,Yes; Comment; Toward_elem)
 =BEGIN DefinedType =TEXT; LambdaVar =TEXT;
 DefBody = CGgraph;

END with DefKind ?= TC, Completed ?= Not_yet;
 END;
 ConceptOrRel_List =LIST OF (ConceptOrRelation);

 ConceptOrRelation = CASE OF
Concept (ATTR IDinCG=INTEGER; Comment;Toward_elem; ...)

 =BEGIN ConceptType =TEXT;
 Referent =CASE OF Variable=TEXT; Individual=TEXT; END;
 ? CGReferent (ATTR ...) = CGgraph;
 ? ... { "?" means that the sub-element is optional }

END;
ConceptInclusion (ATTR IDinCG; Comment; Toward_elem; ...)

 =BEGIN TheIncludedConcept = Concept;END;
Relation (ATTR IDinCG; Comment; Toward_elem; ...)

 =BEGIN
 LinkToOrig (ATTR ...) =BEGIN GRAPHICS; ? ... END;
 ? OtherLinkToOrig =LIST OF (LinkToOrig);
 RelationType (ATTR RelationFrame) =TEXT;
 LinkToDest (ATTR ...) =BEGIN GRAPHICS; ? ... END;
 ? OtherLinkToDest =LIST OF (LinkToDest);

END;
 END; ...

modification on a DE displaying1 a CGgraph or a single concept is not accepted if
the corresponding modification cannot be done in CoGITo, i.e. if it violates some
constraints (e.g. relation signatures). Thus such a graph is validated at each step of
its construction, syntactically by Thot and semantically by CoGITo. The body of a
type definition is similarly validated since it is handled like a normal CGgraph until
the user specifies, using the attribute "Completed", that s/he has completed this body.

In this DTD, a concept has a type, an individual or generic referent, and may also
include a CGgraph in its referent part. In order to let the user set hypertext links
between DEs displaying coreferent concepts (whatever CGgraph these concepts are
included in), we had to specify two kinds of DEs for concepts: 1) "Concept" (new
concept), and 2) "ConceptInclusion" (inclusion of concept). A relation is composed
of a relation type and links to the connected concepts. Concepts and relations have an
attribute for identifying them in a CG ("IDinCG") and another one for referring to one
of the DEs that they might represent ("Toward_elem"). Reference attributes are
hypertext links. DEs displaying CGgraphs, concepts and relations also have a textual
attribute "Comment". Figure 3 shows a DE including others DEs among which the
graphical representation of a concept including a CG in its referent part.

When a document is loaded in memory, if some of its DEs display CGgraphs or
completed type definitions, the corresponding CoGITo internal representations for
these elements are built. When the document is closed, these internal representations
are removed. Thus the loaded documents always reflect the CG base content. The
CGs may, via the DEs which display them, be associated with other information and
organized in various ways inside structured documents, using structural and
hypertext links and inclusions. The same DE displaying a concept or a CG may be
incuded (shared) by various other DEs (e.g. CGs, sections, documents); it is then
accessible by hypertext navigation from these DEs and conversely. The associations
between CGs and information may be exploited automatically for many purposes,
e.g. for retrieving or combining DEs and then for generating new documents. We
shall detail an example of such an exploitation done by CGKAT, in section 3.2.

Associating meta-information with CG representations

When a CG is created, some meta-information(information on its context) may be
associated with it, e.g. its author, its creation date, the reason for its creation, the
DEs source which have led to its creation, the viewpoint on these sources which was
considered for the CG creation (i.e. the considered aspects), the author of the sources,
the context in which these sources were stated, the context in which the represented
entity or situation is generally used, etc. Meta-information on a CG may be repre-
sented using a concept which includes this CG in its referent part (then, conceptual
relations may be connected to this concept for expressing meta-information on the CG).

CGKAT also proposes a shorter way for specifying meta-information on a CG:
via a "CGRepr" (see Figure 2 and Figure 3) or via the attributes "Comment". Such
attributes can store attribute-value pairs. Filling the slots of a CGRepr is just a more

1. In this article, we prefer to use "display" instead of " represent" for graphical representations.

ergonomic way to fill the attribute "Comment" with some predefined kinds of meta-
information. We have defined a relation of specialisation on "CGs with their
associated comments": for testing if a CG Y specializes a CG X, before using the
projection operation, CGKAT checks that the attribute-value pairs in the comment of
Y "specialize" the ones in the comment of X. This is the case if the comment of Y
includes at least all the attributes of the comment of X, and if for each of these attri-
butes, the value for Y is the same or a subtype or an instance of the value for X. Thus
in CGKAT, a request on the CG base may be expressed using a CG request and
additionnal constraints on the meta-information of the retrieved CGs.

Automatic layout of hierarchies and graphs

The P language in Thot is a "language of boxes", i.e. it lets the users define the
characteristics (size, color, relative position, font, etc.) of default presentation boxes
for DEs according to their types or the content of their attributes. The P language
allows to specify default automatic layouts for a DE of kind "Tree", e.g. a vertical or
horizontal layout, or an indented list layout. However, it does not permit the users to
specify an automatic placement for the nodes of a graph which was not defined as a
tree in its DTD (e.g. a CGgraph). In this case, the placement must be done by the
user or be calculated by a C function. Since general hierarchies are graphs, if a tree
form cannot always be used for displaying them, they must be defined as graphs, and
then default automatic layouts cannot be specified using only presentation models.

Fig. 2. Main parts of our DTD for a CGRepr (the "..." are the omitted parts).

STRUCTURE CGRepr; ... { Structural model for a representation with a CG } ...
 CGRepr = BEGIN
 User = TEXT; {Author of the CG} Viewpoint = TEXT;
 Documentation = BEGIN CreationDate = TEXT; SourceAuthor = TEXT;
 ContextOfUse = TEXT; Comment = TEXT;

END;
 TheRepr = CG; ...

END; ...

Fig. 3. A Thot window showing a CGRepr inside other DEs.

 Note: this CGRepr may
have been created for
representing the con-
tent of one or several
DEs, e.g. sentences
like "A cat is on a
mat.", or images of a cat
on a mat. Then, these
DEs and this CGRepr
may be connected by
hypertext links.
 These DEs may also
be connected to several
other CGRepr. See Fi-
gure 4 for examples of
connections.

In the future, CGKAT may exploit DEs of kind Tree for 1) managing the display,
browsing and editing large hierarchies (of types or CGs) by successive generations
of documents displaying parts of the hierarchies1; 2) organizing and displaying the
answers to a request.

2.3 Related Research

A structured document editor like Thot seems adequate for developing a syntactic
editor for a language, especially when the graphical aspects are important. For
instance, Schaar (1994) developed a programming environment for the graphical
state/transition language Argos. Schaar preferred Thot over presentation editors like
UIL and over object-oriented graphical editor toolkits like Unidraw since Thot
provided him with the abstract structure that was needed for handling the objects of
his language.

Hurwitz & Rich (1993) have written a SGML DTD for a CG but it seems that
they did not exploit it to make a CG editor. Compared to dedicated CG browser-
editors, e.g. GRIT (Leane, 1993), our tool inherits of all the functionalities of a struc-
tured document editor. This means, for instance, that the users can associate and mix
knowledge with other multi-media information, and 1) organize knowledge and
information in many ways and according to many viewpoints; 2) present them in
many ways using presentation models or specific presentation rules. However, only
simple presentation rules may be specified for a DE in a presentation model, and only
according to its type. Further implementation may then have to be done for comple-
menting these rules, e.g. for implementing graph layout algorithms, or for giving a
specific presentation to a concept according to its type, a current task or a user model.

In the next section, we show how associations between information and CG
elements can be exploited for structuring or accessing information or knowledge.

3 Conceptual Graphs for Structuring or Indexing Documents
There are two ways to organize DEs (DEs may be whole documents) for information
retrieval: 1) directly, with structural links or cross-references; 2) indirectly, with an
index. Even with typed links, cross-references bear little semantics. A structured
index is a better aid to IR. In indexes, most elements are a representation of the
content of a DE or of a set of DEs. Such a representation may use one or several of
the following things: a lexical expression (e.g. a term or key-word), a DE mark, a
concept type (or topic or class), an individual concept (or instance), a more complex
description of the content of the DE using for example a graph or a logical expression.

It is preferable that the representation of a DE be unambiguous and unique
(hence an atomic or defined concept type is far better for indexation than a term or a
keyword). In addition, the more precisely and semantically a DE is represented and

1. At present in CGKAT, hierarchies of types are not stored in structured documents but in
special separated files, and the display, browsing and edition of these hierarchies are done via
menus (these hierarchies must be loaded in CoGITo first).

this representationprecisely and richly connected to other index elements, 1) the
more inferences can be automatically made for retrieving something, so that the user
may formulate requests at an abstract level1, and 2) the more the user has facilities
for finding what s/he is looking for by hypertext navigation (e.g. Bernstein (1990)
showed that the problem of disorientation which is common with navigation on
direct/untyped hypertext links, is greatly reduced when the user can be guided by the
semantic of the relation). The problem is that semantic relations and representations
are difficult to automatically extract from documents, so they are at present seldom
used in document retrieval or large-scale hypertext systems2.

Representations of DEs may be built for indexing purpose or for knowledge
extraction/modelling purpose. In this last case, the indexation of DEs by some elements
of the knowledge base may be exploited 1)for retrieving or reassembling DEs on
semantic criteria and using knowledge-based techniques, 2)for documenting knowledge
elements, which is useful for explaining them, comparing them or re-using them.

3.1 Representing Document Elements in the CG Formalism

If the CG formalism is used forindexing DEs,a user or a program should be allowed
to associate any type, concept, CG or type definition3 to a DE. However, to allow
reliable uses of DE representations, we distinguish two kinds of DE representations:
simple "annotations" and genuine "representations".

While we do not put any constraint on annotations, what we now call aDE "repre-
sentation" must only describe the DE and its content4, i.e. it should not describe
things which are related to the DE or its content but which arenot (referred to) in the
DE. Thus for instance, a representation of a DE may include a conceptual relation
between two concepts representing DEs, only if theselast DEs are sub-elements of
the first one. By itself, a relation or a type is not complete enough to have a logical or
semantic interpretation, and therefore may not be a DE representation. However, a

1. This is also the conclusion of the Conventions for the Application of HyTime (CApH, 1995)
(Hytime is the ISO 10744 hypermedia document representation standard) which advocates
the use of atopic map (≈semantic network) and presents some kinds of connections between
DEs and a topic map. The CG formalism allows the building of more precise representations,
and in section 3.1 we analyse the various types of connections between CG elements and DEs.

2. However, let us note that for document retrieval, Myaeng (1992) exploits CGs extracted from
documents by natural language processing (NLP). For hypertext systems, NLP is also used a)
for extracting a small semantic network from source texts (the network is then used as an in-
dex, but the represented DEs are only words or expressions and sometimes whole sentences)
(Nanard & al., 1993), or b) for generating semantic relations between big DEs.

3. A type definition may be a relation type definition (using necessary and sufficient conditions)
or a concept type definition (using necessary and/or sufficient or typical conditions). For ins-
tance, the sentence "Cats like milk" may be represented by: "Typical conditions for Cat(x) is
[Cat]<-(Agent)<-[Like]->(Object)->[Milk].". (In Sowa’s terminology, a definition with typi-
cal conditions is called a "schema").

4. By "content of a DE", we mean the sub-elements of the DE and the real or imaginary entities
or situations described or referred to by these sub-elements. By "DE itself", we mean the DE
seen as a whole, i.e. a single entity which includes, refers to or describes others DEs.

type definition may be used to represent a DE, if the content of this DE is a
definition. A CG which includes more than one concept may represent the content of
a DE, but not the DE itself and its content, since a DE is an single entity which must
be represented by an single element; as a matter of fact, relations between DEs can
only be represented by conceptual relations between concepts, not between CGs.

Therefore, in CGKAT there aretwo kinds of hypertext links for associating CG
elements with DEs: an hypertext link of type "Representation" and an hypertext link
of type "Annotation". (The next section shows how the user can use these associa-
tions for retrieving DEs via requests on the CG base). When a user begins a repre-
sentation of a DE, this DE is automatically connected by an hypertext link of type
"Representation" to a DE of kind CGRepr which contains the representation. More
precisely, the represented DE is connected to the list of all its representations (a list
of CGRepr) and each CGRepr is directly connected to the DE it represents (a similar
mechanism exits for annotations). A DE may be represented differently by several
users, and according to different views (if a particular view is specified, it is a partial
representation) but each user may only build one representation of a DE by view.

Only three categories seem necessary1 to classify the kinds of information that
may be extracted from a DE andrepresented:
1) the real or imaginarysituation (state or process) described or referred by the DE
(situations may be related by spatial or temporal relations),
2) theproposition (description, assertion, hypothesis, etc.) stated by the DE (logical
and rhetorical2 relations may apply on a proposition),
3) the format or medium of the DE (word, sentence, logical expression, image,
paragraph, multi-media-document, etc.) i.e. what is usually represented in a
document’s abstract structure (in CGKAT, there is little benefit in representing the
abstract structure with CGs since Thot stores and lets the users search and manage
such a structure very adequately).
Thus a DE may be represented according to three aspects. If a concept is used for
representing an aspect of a DE, its type is a subtype of either "Situation", "Propo-
sition" or "Statement" (in the terminology of Sowa (1992), but we think that
"Medium" is more adequate than "Statement"). If a concept of type Proposition
represents a particular DE, it actually represents the fact that this DE is a particular
description, so it should be individual, and it may include a CG in its referent part
for representing the situation described by the DE (see Figure 3 and Figure 4).

We distinguish DEs which are"symbols" (e.g. words, collocations, symbols)
referring to entities or situations, from"assertions" (e.g. images, sentences, sections)
which describe situations. An assertion is composed of symbols and may be repre-

1. We have derived these three aspects from the three distinctions classically used in linguistic
or knowledge representation: a) symbol or sign, b) concept or idea or intension, c) referred
object or extension. More precisely, for these distinctions, we adopt the terminology and on-
tology of Sowa (1992) which is derived from the "Situation Semantic" (Barwise & Perry,
1983): a) symbol or statement, b) proposition, c) situation.

2. Examples of rhetorical relations: Summary, Concession, Antithesis, Circumstance, Purpose.

sented by a CGgraph, a concept type definition (if the assertion is a definition) or a
single concept of type Proposition (in this last case, CGKAT generates1 an indivi-
vidual referent for the concept; this allows a user reuse this particular concept in
other CGs for representing relations between the represented DE and other DEs).
Since a symbol is not an assertion, CGKAT generates warnings when a CGgraph, a
concept type definition or a concept of type Proposition is used for representing it.

If some DEs E1,...,En are represented by concepts or CGs, a default represen-
tation for a DE including E1,...,En may be automatically generated with 1) a maximal
join on the CGs of the representations, and 2) a generalization on their meta-infor-
mation (Figure 4 gives an example, see the CGRepr created by "cgkat"). Other
techniques could be used. Such generations save a lot of work to the user even if s/he
must check them. The lack of constraints for annotations reduces the benefits of
similar generations for them.

1. CGKAT generates a unique referent name for the concept using 1) the identifier of the DE
for the concept, 2) the name of the document where this DE is, 3) the name of the concept
author and of 4) the name of the view taken for this concept creation (see Figure 4 and 5).

Fig. 4. Hypertext links between document elements and CGRepr elements
([Mat] and [Cat : #Tom] : ConceptInclusions of [Mat] and [Cat : #Tom]

 Hypertext navigation is possible between inclusions and on structural links.
 The CGRepr elements may be organized inside one one several documents).

Tom is on a mat.
Tom is happy.

Abstract structure of the document "D" Knowledge representations

Association

User2,View2,[Hypothesis : #D7_User2_View2
[Mat]->(Attr)->[Soft]]

Repr.
cgkat,View1, [Fact : #D83_cgkat_View1

[Cat:#Tom]-
 ->(Attr)->[Soft]
 ->(Attr)->[Happy]]

User1,View1,[Fact : #D56_User1_View1
[Cat : #Tom]->(Attr)->[Happy]]

Tom Mat

Tom

Repr.

User2,View1,[Fact : #D41_User2_View1
[Cat : #Tom]->(On)->[Mat]]

Repr.

Repr.

User1,View1,[Mat]

User1,View1,[Cat : #Tom]

Repr.

Repr.

Tom is on a mat. Tom is happy.

Easing knowledge representation

Representations of DEs are interesting for document generation (see next section)
but in a knowledge modelling context, extracting knowledge of a document via
representations of DEs may not be easy or natural. Instead of building DE represen-
tations and then synthesizing them, the user should also be allowed to work on a big
structure and then use parts of this structure for the generation of DE representa-
tions. In CGKAT, the implementation of this function will exploit inclusions.

For easing knowledge reuse or IR by many users, the types used in the concepts
or relations of DE representations should be derived from anontology which is
shared and understandable by all the users. For this, CGKAT exploits the semantic
dictionary WordNet (Miller & al., 1990) for providing 1) a default browsable and
updatable hierarchy of 90,000 concept types, and 2) a facility for accessing the
concept types in this ontology using lexical terms (so the concept types corres-
ponding to the known meanings of the terms are given). This facility eases the use of
the ontology and guides knowledge representation. CGKAT also proposes a default
hierarchy of 200 relation types: thematic, mathematic, spatial, temporal, rhetoric and
argumentative relations (see (Martin, 1995) for details).

3.2 Information/Knowledge Retrieval and Structuring

We have seen how in CGKAT a DE may be associated with other DEs by structural
links, bi-directional hypertext links and inclusions. Some of these DEs may not only
be rawinformation but may beknowledge representations and mayindex (represent
or annotate) other DEs (information). Thus, 1) knowledge representations may be
organized and accessed using information structuring/retrieval techniques (e.g.
structural and hypertext links), and 2) since knowledge representations index other
DEs, these DEs may be organized and accessed using knowledge structuring/
retrieval techniques (e.g. the specialization relations that may be calculated between
CGs). Moreover, the main originality of our work is that these two complementary
kinds of techniques may beused in combination for accessing a piece of information
or a piece of knowledge.

For instance, a user maynavigate from a DE to its representation, then navigate
to each piece of knowledge (e.g. a CG) which re-uses this representation (inclusions
must have been used for enabling this). In this way, a user may know which other
pieces of knowledge a representation is connected to, by which semantic relation,
and in which context (and from a piece of knowledge, s/he may go to another DE i.e
to another information or knowledge). Thecontext may be formally represented in
the CG formalism or via our shortcut for meta-information representation (see
section 2.2). It is also given by the structural and hypertext links connected to the
knowledge. Although this notion of context is important, the other knowledge
oriented hypertext systems we have encountered, can only display user-selected
parts of a single flat semantic network (no context can be defined with embedded
nodes or via the clustering of the network).

CGKAT also permits the users toaccess DEs with conceptual requests. A

request or a textual command must be written by the user in a DE of kind Reques-
tAnswer (another kind of DE we have defined). Then, the result of the command is
displayed by CGKAT inside this DE and another DE of kind RequestAnswer is
created for allowing the user to express another command (see Figure 5).

At present in CGKAT, conceptual requests on the CG base can only be searches
for specializations of a CG request with possibly associated meta-information (i.e.
constraints). For each retrieved CG, CGKAT may present 1) a "graphical represen-
tation" of this CG using the DE with which the CG has been built, and/or 2) the DEs
which are represented by the CG, and/or 3) the DEs which are annotated by the CG.
The user may choose the kind of result s/he wants. In any case, the presented DEs are
not simple copies of DEs but inclusions, i.e. living copies. Thus the result of a request
is a generated DE which is a view on the knowledge base or on other documents,
and this view corresponds to the criteria chosen by the user. Such results of requests
may constitute a whole document or may be combined and completed for producing
documentations. They may also be the basis for explanations.

We are working on a very complementary way to make searches in the CG base
(and then in the documents since we keep the principles of result presentation): via
the search of paths between source and destination sets of concepts specified by the
user. If the retrieved paths are aggregated (this is an option), this method is also a
method for generating CGs, but then the layout of these CGs must also be generated.
A DE of kind Tree may also be used for organizing the results of a search, if these
results are numerous.

Fig. 5. A thot document displaying requests on the CGs and DEs of Figure 4.

In addition to menus, CGKAT includes textual commands for CG manipulation
(e.g. directed join, maximal join, etc.) and also ascript language1 to let the user
combine the results of commands or queries and write scripts for generatingviews
and answering "frequently asked questions". Such scripts may be associated with a
DE and may be explicitly or implicitly activated (scripts may be considered as
dynamic hypertext links).Generated views really enable a user tocombine searches
by queries and by hypertext navigation since a view is the departure point of many
hypertext links toward the sources and contexts of the DEs collected by the view.

CGKAT also exploits the Thot index facility (Richy, 1994) and the representa-
tions of occurrences of terms in a document, for generating aglossary of these terms
which synthesizes their representations (the terms and theirs representation are
alphabetically sorted and duplicates are eliminated). For each term, this glossary
gives 1) the type of the concept used for representing the term, 2) the name or the
type of the user who created this representation, 3) the name or the type of the view
s/he used, 4) the name or the type of the source author. This information is not just
copied but made with inclusions of the DEs where it comes from (i.e. sub-elements
of a CGRepr). Thus hypertext navigation is possible from this information to the
representations. The Thot index facility mechanism also allows navigation from a
term in the document to its corresponding entry in the glossary. Then, from an occur-
rence of a term, a user has access both to the representation(s) of this occurrence and
to the synthesis of representations of other occurrences of the same terms. Moreover,
when a document is composed of other documents, the Thot index facilty
mechanism can synthesize the glossaries of these included documents. Such a
glossary is thus a powerful aid to information and knowledge retrieval (and then for
knowledge documentation and sharing). Besides, we have seen thatthematic
indexes on any combination of conceptual criteria may also be generated via
requests with CGs.

3.3 Related Research

CGKAT integrates three kinds of information structuring and retrieval techniques:
the hypertext ones, the structured document ones and the knowledge-based ones.

Knowledge acquisition (KA) tools generally only permit the users to document
some predefined kinds of knowledge elements with unstructured parts of text, using
hypertext links, and generally have no other IR mechanism, even though the benefits
of using hypertext systems for KA are often highlighted. However, few hypertext
systemsintegrate a knowledge-based approach, i.e. allow the represention of
knowledge and then exploit it for enabling hypertext navigation, semantic queries
and the combination of these two techniques. MacWeb (Nanard & al., 1993) is an
exception to this. CGKAT has approaches or functions similar to MacWeb, especially
in the use of views, but MacWeb is a tool developed from scratch whereas CGKAT
combines the facilities of two complementary specialized tools, a structured document
editor and a CG workbench. Moreover, CGKAT allows to represent and to exploit

1. CKAT can call ’sh’ (shell, the standard UNIX system command interpreter) and conversely.

contexts, via the CG formalism and via the use of structural links. RIME (Kheirbek
& Chiaramella, 1995) is an IR system which, like MacWeb, implements everything
in the same underlying formalism. RIME uses the CG formalism but is more oriented
towards document retrieval, so CGKAT ressembles much more MacWeb than RIME.
Other advantages of CGKAT over these tools are 1) to provide synthesis of represen-
tations of terms using specialglossaries, 2) to explicitly handle manyrepresenta-
tions andannotations of a same DE bymany users and formany views. Bürsner &
Schmidt (1995) have shown that such views are of a great help in KA.

The CG formalism provides a logic-based and semantic way to represent
knowledge. CGKAT exploits the relation of specialization between CGs for queries.
Otherkinds of queries are necessary for IR, e.g. the search of paths, and the search of
nodes according to the number of relations they are connected to (Beeri & Kornatsky,
1990). In addition, for document retrieval or any other search using superficial repre-
sentations of DEs for indexing them, the IR techniques must also handle the "recall"
and "precision" factors (here, the indexation goal is not to really represent infor-
mation for enabling users to directly find it with queries, but to index DEs by minimal
discriminant representations for enabling searches of some DEs among many others).

4 Conclusion
We have presented the benefits of using a structured document editor for editing,
presenting and structuring knowledge representations, and shown how this can be
done for CG representations. Then, we have shown how to associate knowledge
elements with other pieces of information, and we have analysed the semantics of
these associations: contextualization, representation, annotation. Thus this work
specialises some guidelines given by CApH (1995). Finally, we have given several
ways first to exploit such associations for organizing and retrieving knowledge or
information, and second to combine searches a) by navigation on hypertext and
structural links, and b) with knowledge-based queries. CGKAT also helps to build
knowledge by providing default ontologies for concept and relation types. For
concept types, CGKAT exploits the semantic dictionary WordNet. CGKAT has been
applied to retranscriptions of interviews of experts in road accident analysis (Alpay,
1996).

5 Acknowledgements
The authors thank the members of the ACACIA team, especially Dr Rose Dieng and
Dr Olivier Corby for their advice on the writing of this article. We are also grateful
to the reviewers for the comments on our paper, and the numerous corrections of the
English.

6 References
Alpay L. (1996). Modelling of reasoning strategies, and representation through

conceptual graphs: application to accidentology. INRIA Research Report, 1996.

Beeri C. & Kornatsky Y. (1990).A Logical Query Language for Hypertext Systems.
In Proc. of DEXA’90, Vienne, Autriche, August, 1990.

Bernstein M. (1990).Hypertext and technical writing. In Proc. DEXA’90, Int. Conf.
on Databases and EXpert systems Applications, Vienn (Austria), August 1990.

Bürsner S. & Schmidt G. (1995). Building views on conceptual models for structuring
domain knowledge. In Proc. of KAW’95,Gaines, B.R. Eds, University of Calgary,
Banff, Alberta, Canada, February 26-March 3, 1995.

CApH (1995). Drafts of the "Conventions for the Application of HyTime" (CApH).
Available at ftp.techno.com//pub.CApH.docs.

Croft W.B. (1987).Approaches to intelligent information retrieval. In Information
Processing and Management, Vol 23, no. 4, 1987.

Decouchant D. (1995).Structured Cooperative Editing and Group Awareness. In HCI
International'95, 6th International Conference on Human-Computer Interaction
(Editors: Anzai Y. and Ogawa K.), Elsevier Science, Yokohama, 9-14 July 1995.

Haemmerlé O. (1995).CoGITo: une plate-forme de développement de logiciels sur les
graphes conceptuels. Ph.D thesis, Montpellier II University, France, January 1995.

Hurwitz A. & Rich W. (1993).GML for Conceptual Graph Networks. IBM Technical
Report No 03.485, May 1993.

Kheirbek A. & Chiaramella Y. (1995).Integrating Hypermedia and Information
Retrieval with Conceptual Graphs. In HIM’95, Konstanz, Germany, April, 1995.

Marshall & al. (1991).Aquanet, a hypertext tool to hold your knowledge in place. In
Proc. of the 3rd ACM Conf. HTX’91, ACM Press, San Antonio (Tx), 1991.

Martin Ph. (1995).Knowledge Acquisition Using Documents, Conceptual Graphs and
a Semantically Structured Dictionary. Proc. of KAW’95, Gaines, B.R. Eds, Univer-
sity of Calgary, Banff, Alberta, Canada, February 26-March 3, 1995.

Miller G.A., Beckwith R., Fellbaum C., Gross D. & Miller K. (1990).Five Papers on
WordNet. CSL Report 43, Cognitive Science Laboratory, Princetown University,
July 1990. (Papers and system available at clarity.princeton.edu//pub).

Myaeng S.H. (1992).Conceptual Graphs as a Framework for Text Retrieval. Concep-
tual Structures: current research and practice (Editors: Nagle T.E., Nagle J.A.,
Gerholz L.L., and Eklund P.W.), England, Ellis Horwood Workshops, 1992.

Nanard J., Nanard M., Massotte A-M., Djemaa A. Joubert A., Betaille H. & Chauché J.
(1993). Integrating Knowledge-base Hypertext and Database for Task-oriented
Access to Documents. In Proc. of DEXA’93, 4th Int. Conf. on Database and EXpert
systems Applications (Eds: Varik V., Lazansky J., Wagner R.R.), Prague, Sept. 1993.

Quint V. & Vatton I. (1992).Hypertext Aspects of the Grif Structured Editor: Design
and Applications. R.R. 1734, INRIA, Rocquencourt, July 1992.

Richy H. (1994).A hypertext electronic index based on the Grif structured document
editor. In Proc. of Electronic Publishing, vol. 7, num. 1, pp. 21-34, March 1994.

Schaar Ph. (1994).Un environnement de programmation pour le langage graphique
Argos.CNAM engineer report, IMAG, Grenoble, France, March 1994.

Sowa J.F. (1992).Conceptual Graphs Summary. Conceptual Structures: current
research and practice (Editors: Nagle, T.E., Nagle, J.A., Gerholz, L.L., and Eklund,
P.W.), England , Ellis Horwood Workshops, 1992.

