
COLLABORATIVE KNOWLEDGE SHARING AND EDITING

Philippe MARTIN Université de La Réunion (and adjunct researcher of Griffith University, Australia)
 EA2525 LIM, Saint-Denis de la Réunion, F-97490, France.
pmji@phmartin.info

ABSTRACT

This article first lists reasons why - in the long term or when creating a new knowledge base (KB) for general knowledge
sharing purposes - collaboratively building a well-organized KB does/can provide more possibilities, with on the whole
no more costs, than the mainstream approach where knowledge creation and re-use involves searching, merging and
creating (semi-)independent (relatively small) ontologies or semi-formal documents. The article lists elements required to
achieve this and describes the main one: a KB editing protocol that keeps the KB free of automatically/manually detected
inconsistencies while not forcing them to discuss or agree on terminology and beliefs nor requiring a selection committee.

KEYWORDS

Knowledge sharing, integration, retrieval and evaluation.

1. INTRODUCTION

Ontology repositories - and, more generally, the Semantic Web - are most often envisaged as composed of
many small static (semi-)formal files (e.g., RDF or RDFa documents) more or less independently developed,
hence loosely interconnected and with many implicit redundancies and inconsistencies between them (in this
article, “implicit” means “not represented in formal or semi-formal way”). For example, this mainstream
approach is advocated by Shadbolt et al. (2006) and Casanovas et al. (2007). The missing interconnections are
difficult to recover manually and automatically. As Section 2 shows, due to these missing semantic relations,
this mainstream “static file based approach” - as opposed to an approach based on one (distributed or not)
“collaboratively-built well-organized large knowledge base (cbwoKB)” - makes knowledge re-use tasks complex
to support and do correctly or efficiently, especially in a collaborative way. Most Semantic Web related
research works are intended to support such tasks (ontology creation, retrieval, comparison and merging).
However, most often, they lead people to create new files - thus contributing to the problems of knowledge re-
use - instead of inserting their knowledge into one cbwoKB. Such a KB may be on a single machine or may be
a global virtual cbwoKB (gv-cbwoKB) distributed into various correlated cbwoKBs on several Web servers
and/or people's machines of a peer-to-peer network. To avoid implicit redundancies and inconsistencies within
a gv-cbwoKB, there should be direct/indirect cross-references and knowledge assertion+query forwarding
between the cbwoKBs. This point is not detailed in this article. Martin (2009) introduces a protocol to support
this, based on having each cbwoKB i) defining and advertising the kinds of knowledge objects it stores, ii)
committing to store all objects fulfilling this advertised definition, and for other objects, iii) pointing/redirecting
to a relevant cbwoKB. This protocol is not detailed in this article.

Except for WebKB-2 (www.webkb.org; Martin and Eboueya, 2008) - the tool implementing the new
techniques described in this article - no other ontology/KB server has an ontology-based protocol permitting
and enforcing or encouraging people to interconnect their knowledge into a cbwoKB, while keeping it at-least-

minimally-well-organized (this means that manually or automatically detected partial redundancies or
inconsistencies are prevented or made explicit via relations of specialization, identity and/or correction) and
without forcing people to agree on terminology nor beliefs (knowledge integration is loss-less). Indeed,
i) achieving these two requirements for scalable cooperative ontology building is often but wrongly assumed to
be impossible or to involve centralization or domain restrictions, ii) it requires the users to see and write
(semi-)formal knowledge representations, iii) it does not permit to directly re-use already existing ontologies,
iv) it requires proposing and managing a large general ontology (WebKB-2 does so), and iv) it is useful for
general repositories but then only indirectly for applications. In general repositories, as we shall see, choices
between contradictory beliefs need not and should not be made. Thus, for each application performing problem-
solving, its developers should make selections and perform choices based on the requirements of the
application..

Other KB servers/editors (e.g., Ontolingua, OntoWeb, Ontosaurus, Freebase, CYC and semantic wiki
servers) have no such protocols and i) let all/some users modify what other ones have entered (this
discourages information entering or leads to edit wars), or ii) require all/some users to approve or not changes
made in the KB, possibly via a workflow system (this is bothersome for the evaluators, may force them to
make arbitrary selections, and this is a bottleneck in information sharing that often discourages information
providers). By avoiding these two governance problems and leading to a well organized KBs, such kinds of
cbwoKB protocol form a basis for a scalable knowledge sharing, even when multiple communities are
involved. Actually, unlike with other approaches, a same cbwoKB can be used by many communities with
partially overlapping focus since the KB is organized and can be filtered, queried or browsed by each person
according to her needs or according to a community viewpoint. Even if built by many communities a (virtual)
cbwoKB is unlikely to be huge since i) redundancies are reduced, and ii) “well organized knowledge” (as
opposed to data) is difficult to build. However, a cbwoKB can permit to index or relate the content of data-
bases. In any case, the bigger and the more organized the cbwoKB, the more information are easier to access
and compare. Since building a cbwoKB can partly re-use resources of more classic (i.e., less organized)
Semantic Web solutions or database solutions, it can be incrementally built to overcome the limitations of
these solutions when they become clear and annoying to their users.

Section 3 presents the knowledge representation model used by the rules of the collaborative “KB editing”
protocol of WebKB-2. Section 4 presents these rules and introduces many ideas yet unpublished in a journal. For
readability reasons, the model and rules are not presented in a fully formal way. Furthermore, as with most
methodological rules, the “completeness” criterion does not apply well to these rules.

Collaborative evaluation of knowledge representations is an extension of collaborative KB editing since,
for precision and re-use purpose, evaluations should themselves be knowledge representations. The
collaboration scheme of WebKB-2 is quickly introduced in Point 7 of the collaborative “KB editing” protocol.

WebKB-2 has been applied to the collaborative representation of many domains by students (for learning
purposes), researchers (for knowledge sharing and evaluation purposes) and, currently, experts in biodiversity.
Section 5 presents an example of application for (e-)learning.

Section 6 concludes and reminds that the presented knowledge sharing approaches are complementary.

2. APPROACHES BASED ON FILES VERSUS CBWOKB SERVERS

With files, information retrieval (IR) often leads to a list of possibly relevant files or pieces of information
(objects, e.g., a formal term or a informal sentence) whereas it leads to an exact answer in one ontology (a
cbwoKB or one formal file; the problem is that without a cbwoKB, there are more than one file). Such an
answer may be a portion of the cbwoKB, e.g., a part/subtask/specialization hierarchy (with associated
argumentation structures) if the query is of the kind “what are the resources/tools/methods to do ...”. Such
semantically structured answers allow a user to find and compare all relevant objects instead of getting a long
redundant list of objects/files where original/precise ones are hidden among/behind objects that are more
general, mainstream or from big organizations. This is also why IR quality decreases when the size and
number of the files increases, but not when the number of objects increases in one ontology.

The more objects two files contain, the more difficult it is to link these files via semantic relations and
hence to semantically compare, organize and evaluate them. Instead, similarity/distance (statistical) measures
have to be used. In a cbwoKB, when needed, semantic queries can be used to filter objects or generate files,

according to arbitrary complex combinations of criteria, e.g., about the creators of the objects. (Some of these
criteria may be used for the internal organization of the cbwoKB but the resulting “views” or “contexts” are
language/content dependent choices and, unlike (semi-)independently created static files, lead the users to
strongly relate objects of different views). Ontology libraries, from early ones such as the Ontolingua library
to imagined ones such as “The Lattice of Theories” (Sowa, 2005), are often organized into “minimal and
internally consistent theories” to maximize their re-use. However, this also leads to few relations between
objects of different ontologies, as well as implicit redundancies or inconsistencies between them, and hence
more difficulties to compare, merge or relate them. On the other hand, as acknowledged by Sowa, if the
objects are organized into a cbwoKB, such (lattices of) theories can be generated via queries.

With formal files as inputs and outputs, knowledge re-use or integration leads to the creation of even
more files and requires people to select, compare, relate, merge, adapt and combine (parts of) files. Except
for simple applications where fully automatic tools can deliver good-enough results, these are complex tasks
that have to be done by trained people who know the domain. Most works in collaborative knowledge
sharing or “ontology evolution in collaborative environments” are about (semi-)automatic procedures for
integrating ontologies (Euzenat et al, 2009) and for rejecting or integrating changes made in other ontologies,
e.g., (Casanovas et al, 2007; Noy and Tudorache, 2008; Palma et al, 2008). In a cbwoKB, no adaptation or
integration has to be done for each re-use: the most important relations from an object have to be entered by
its creators and then can be complemented by any user. Indeed, it is often the case that only the object
creators know what their objects really mean or have information required for relating them to other objects.

The normalization/editing rules of a cbwoKB should maximize the use of principled multi-inheritance
hierarchies (for example, hierarchies of specialization/mereological/spatial/... relations) where each object has
a “right place” in the restricted sense that different users would search or insert a same object at the same
place. Only a KB server with a large cbwoKB can permit a knowledge provider to simply/directly add one
new object “at its right place” and guide her to provide precise and re-usable objects that complement the
already stored objects. This “unique/right place”, i.e., the absence of implicit redundancies, is a minimal
requirement for knowledge insertion and retrieval to be done in a scalable way in the hierarchies and hence in
the semantic network of which they are the backbones (Dromey, 2006).

3. LANGUAGE MODEL FOR THE KB EDITING PROTOCOL

The cbwoKB editing protocol used in WebKB-2 is intended to keep the cbwoKB “at-least-minimally-well-
organized” in the sense given in the introduction. It is not tied to any particular knowledge representation
language (KRL) or inference mechanism (hence, this is not the point of this article and no comparison is made
on such mechanisms). This protocol only requires that conflicts between knowledge representations - i.e.,
partial redundancies or inconsistencies between terms or statements - are detected by some inference
mechanism or by people (hence, the protocol also works with informal pieces of knowledge as long as they can
be inter-related by semantic relations). This does not imply that the KR language should be restricted. The more
conflicts are detected, the more the KB is kept organized and hence exploitable.

The model for the protocols - i.e., their view on a KB (whichever KR language it actually uses) - is a set of
objects which are either terms or statements. Every object has at least one associated source (creator, believer,
interpreter, source file or language) represented by a formal term. A formal term is a unique identifier for
anything that can be though of, i.e., either a source, a statement or a category. It has a unique meaning which
may be made partially/totally explicit by its creator via definitions with necessary and/or sufficient conditions.
An identifier may be an URI or, if it is not a creator identifier, may include the identifier of its creator (this is
the classic solution to avoid lexical conflicts between terms from various sources). An informal term is one
name of one or several objects. Two objects may share one or several names but cannot share identifiers. A
statement is a sentence that is either formal, semi-formal or informal. It is informal if it cannot be translated into
a logic formula, for example because it does not have a formal grammar with an interpretation in some logics.
Otherwise, it is formal if it only uses formal terms, and semi-formal if it uses some informal terms. A statement
is either a category definition or a belief. A belief must have a source that is its creator and that believes in it
and/or that has represented (and hence interpreted) a statement from some other source. Finally, a category is
either a type of objects or an individual (object). A type (a “class” in OWL) is either a relation type or a
concept type. An individual is an instance of a first-order type.

Giving a definition is equivalent to using a specialization/identity relation, except that the system can exploit
the definition to better place the term in the specialization hierarchy. Every belief is also automatically inserted
in the specialization hierarchy and its place may be refined by its creator if this does not introduce an
inconsistency in the KB. In order to have a unique specialization/generalization hierarchy and hence be able to
compare any pair of formal or informal objects (i.e., know if one generalizes or specializes the other), this
hierarchy must actually use several kinds of specialization relations (all of which being subtypes of an
“extended-specialization” relation type): i) the classic “subtype” and “instance” relations between formal terms,
ii) the classic “logical-deduction-of” between formal statements (which, when formal terms have definitions,
permits to calculate or check subtype/instance relations between these terms), and iii) an “informal-
generalization” from a formal or informal object to an informal one.

The KR model of WebKB-2, its associated notations and its inference mechanism must now be introduced
for illustration purposes. Although graph-based, this model is equivalent to the model of KIF (Knowledge
Interchange Format; http://logic.stanford.edu/kif/dpans.html), i.e., it permits to use 1st order logic with
collections (sets, lists, ...) and contexts (meta-statements that restrict statements). WebKB-2 allows the use of
several notations: RDF/XML (an XML format for knowledge using the RDF model), the KIF standard
notation and other ones which are here collectively called KRLX. These KRLX languages were specially
designed to ease knowledge sharing: they are expressive, intuitive and normalizing, i.e., they guide users to
represent things in ways that are automatically comparable. One of them is a formal controlled English named
FE. It will be used for the examples along with KIF. These languages can be used for creating assertion/query
commands and these commands can be sent to the WebKB-2 server via the HTTP/CGI protocol, from an
application or from a WebKB-2 Web form. Other communication interfaces are being implemented: one based
on SOAP and one based on OKBC (Open Knowledge Base Connectivity; http://www.ai.sri.com/~okbc) to
query (or be queried by) frame-based tools or servers, e.g., Loom, SRI and the GKB-Editor.

Here are examples of terms in KRLX. en#"bird" and "bird" refer to the English informal word “bird”
while wn#bird is a formal term referring to one of the WordNet categories for “bird”. Here are examples of
statements in FE. u1#u2#"birds fly" is an informal statement from u2 that is represented by u1.
u1#`any u1#bird is pm#agent of a pm#flight´ is a formal statement and definition by u1 of u1#bird
as something that necessarily fly. u1#`every u1#bird is agent of a flight´ is a semi-formal
statement and belief of u1 that “every u1#bird flies”. In KIF, these last two statements would respectively be
 (creator u1 '(defrelation u1#bird (?b) :=> (exists ((?f pm#flight)) (pm#agent ?b ?f))))
and (believer u1 '(forall ((?b u1#bird)) (exists ((?f flight)) (agent ?b ?f)))).

When the creator of an object is not explicitly specified, WebKB-2 exploits its “default creator” related
rules and variables to find this creator during the parsing. Similarly, unless already explicitly specified by the
creator, WebKB-2 uses the “parsing date” for the creation date of a new object. The creator of a belief is also
encouraged to add contextualizing relations on it (at least temporal and spatial relations must be specified).

RDF/XML - the W3C recommended linearisation of RDF - and OWL - the W3C recommended language
ontology - are currently not particularly well suited for the cbwoKB editing protocol or, more generally, for
the representation or interconnection of expressive statements from different users in a same KB.

• They offer no standard way to associate a believer, creator or interpreter to every object in an
RDF/XML file. Since 2003, RDF/XML has no bagID keyword, thus no way to represent contexts and
hence believers or beliefs. XML name-space prefixes (e.g., u1:bird), Dublin Core relations and
statement reification do not permit to do this. This is likely a temporary only constraint since many
RDF-related languages or systems extend RDF in this direction: Notation3 (N3), Sesame, Virtuoso, ...

• RDF and OWL - like almost all description logics - do not permit their users to distinguish definitions
from universal quantifications. More precisely, they do not offer a universal quantifier. N3 does
(Turtle, the RDF-restricted subset of N3, does not). The distinction is important since, as noted in the
documentation of KIF (http://logic.stanford.edu/kif/dpans.html#5.3), a universally quantified statement
(belief) may be false while a definition cannot. A definition may be said to be “neither true nor false”
or “always true by definition”. A user u1 is perfectly entitled to define u1#cat as a subtype of
wn#chair; there is no inconsistency as long as the ways u1#cat is further defined or used respect
the constraints associated with wn#chair. A definition may be changed by its creator but then the
meaning of the defined term is changed rather than corrected. This distinction is important for a
cbwoKB editing protocol since it leads to different conflict resolution strategies: “term cloning” and
“loss-less correction” (Point 5 and Point 6 of the next section).

• Many natural language sentences are difficult to represent in RDF/XML+OWL or N3+OWL, since
they do not yet have various kinds of numerical quantifiers, contexts, collections, modalities, ... (FE
has concise syntactic sugar for the different kinds). However, at least N3 might soon be extended.

• Like most formal languages, RDF/XML and N3 do not accept - or have a special syntax for - the use of
informal objects instead of formal objects. KRLX does and this permits WebKB-2 to create one
specialization/generalization hierarchy categorizing all objects. More precisely, this is an “extended
specialization/generalization” hierarchy since in WebKB-2 the classic “generalization” relation
between formal objects (logical implication) has been extended to apply to informal objects too.

For its cbwoKB editing protocol, WebKB-2 detects (partial) redundancies or inconsistencies between
objects by detecting exclusion and extended specialization relations between (parts of) these objects. A
statement Y is an extended specialization of a statement X (i.e., Y includes the information of X and hence
either contradicts it or makes it redundant) if X structurally matches a part of Y and if each of the terms in
this part of Y is identical or an extended specialization of its counterpart term in X. For example, WebKB-2
can detect that u2#`Tweety can be agent of a flight with duration at least 2.5 hour´
(which means “u2 believes that Tweety can fly for at least 2.5 hours”) is an extended specialization (and an
“extended instantiation”) of both u1#`every bird can be agent of a flight´ and
u1#`2 bird can be agent of a flight´ . In KIF, the first of these two statements can be written:
 (believer u1 '(modality possible '(forall ((?b bird)) (exists ((?f flight)) (agent ?b ?f)))))

Furthermore, these last two statements can be found to be extended specializations of (and redundant with)
respectively u2#`75% of bird can be agent of a flight´ and u2#`at least 1 bird can be agent of
a flight´. Similarly, this last graph can be found to be exclusive with u3#`no bird can be agent of a
flight´.

WebKB-2 uses the same graph-matching technique for calculating partial or total extended-specialization
relations between formal/informal statements, and therefore also “actual or potential conflicts”. Other
inference mechanisms could be used instead or in addition for detecting more specialization relations. This
matching takes into account numerical quantifiers and measures, not just existential and universal quantifiers.
Apart for this, it is similar to the classic graph matching for a specialization (or conversely, a generalization
which is a logical deduction) between positive conjunctive existential formulas (with or without an associated
positive context, i.e., a meta-statement that does not restrict its truth domain). This classic graph matching is
sound and complete with respect to first-order logic and can be computed with polynomial complexity if the
query graph (X in the above description) has no cycle (Chein and Mugnier, 1997). Apart from this restricted
case, graph matching for detecting an extended specialization is not always sound and complete. However,
this operation works with language of any complexity (it is not restricted to OWL or FOL) and the results of
searches for extended specializations of a query graph are always “relevant”.

4. COLLABORATIVE KB EDITING PROTOCOL

The rules of the protocol are intended for each object to be connected to at least another object via relations
of specialization/generalization, identity and/or argumentation. These rules also permit a loss-less
information integration since they do not force to make knowledge selections. They apply to the addition,
modification or removal of an object in the KB, e.g., through a graphical interface or via the parsing of a new
command in a new input file. This does not serialize objects in the KB and waiting till the whole input file is
parsed would not permit to detect more partial redundancies or inconsistencies between the objects.

The independence of the protocol with respect to the KRL is clear in its high-level algorithms which are
given below in Java (and, for clarity purposes, in an object-oriented way) and then discussed via a list of
informal rules. These algorithms present some checks on a user's attempt to remove or add a statement and the
resulting system decision: rejecting the action (“return false”) or accepting it, with possibly some automatic
repair step before accepting it. Only statement removal and adding are considered in the algorithms since
i) updating is considered as removing followed by adding, ii) reading or re-using an object is always accepted
(privacy control is not dealt with in this article), and iii) term removal or adding must be made via the removal
or addition of a statement (see the second informal rule below). In the following algorithms and rules, the word
“user” is used as a synonym for “source”.

boolean statement.removal_by (User agent)
{ if (object.creator != agent) return false;
 if (agent.created_statements.are_inconsistent_with(this)) return false;
 if (agent.created_statements.are_redundant_with(this)) return false;
 if (this.is_definition())
 { if (KB.statements_without(this).are_inconsistent())
 KB.clone_term_in_statements_using(this.defined_term());
 }
 else if (KB.statements_without(this).are_inconsistent()) this.clone_for_other_believers();
 KB.remove(this,agent); return true;
}

boolean statement.adding_by (User agent)
{ if (this.is_informal_statement() && !this.has_associated_argumentation_relation()) return false;
 if (agent.created_statements.are_inconsistent_with(this)) return false;
 if (agent.created_statements.are_redundant_with(this)) return false;
 if (this.is_definition())
 { if (this.is_definition_of_new_term() && KB.statements.are_inconsistent_with(this)) return false;
 if (this.is_new_definition_of_already_declared_term() &&
 KB.statements.are_inconsistent_with(this))
 KB.clone_term_in_statement_inconsistent_with(this);
 }
 else if (KB.statements.are_partially_conflicting_with(this))
 return false; //”implicitly redundant/inconsistent”
 KB.add(this,agent); return true;
}

Here are the informal rules enforced by these algorithms.

1. Any user can add and use any object but an object may only be modified or removed by its creator.

2. Adding, modifying or removing a term is done by adding, modifying or removing at least one statement
(generally, one relation) that uses this term. A new term can only be added by specializing another term
(e.g., via a definition), except for process types which, for convenience purposes, can also be added via
subprocess/superprocess relations. In WebKB-2, every new statement is also automatically categorized
into the extended specialization hierarchy. A new informal statement must also be connected via an
argumentation relation to an already stored statement. In summary, all objects are manually or
automatically inserted in the extended specialization hierarchy and/or the subprocess hierarchy, and thus
can be easily searched and compared. However, it is clear that if one user (say, u2) enters a term (say,
u2#object) that is implicitly semantically close to another user's term (say, u1#thing) but does not
manually relates them or manages to give u2#object a definition that is not automatically comparable to
the definition of u1#thing (i.e., there is no partial redundancies between the two definition) then the two
terms cannot be automatically related by the system and the implicit redundancy cannot be rejected by the
system. Here, the problem is that u2 has not respected the following “best practice” rule (which is part of
WebKB-2 normalization rules): “always relate a term to all existing terms in the KB via the most
important or common relations: i) transitive relations, especially (extended) specialization/generalization
relations and mereological relations (to specify parts, containers, …), ii) exclusion/correction relations
(especially via subtype partitions), iii) instance/type relations, iii) basic relations from/to processes,
iv) contextualizing relations (spatial, temporal, modal, …) and v) argumentation relations”.

3. If adding, modifying or removing a statement introduces an implicit redundancy (detected by the system)
in the shared KB, or if this introduces a detected inconsistency between statements believed by the user

having done this action, this action is rejected by the system. Thus, in the case of an addition, the user
must refine his statement before trying to add it again or he must first modify at least one of his already
entered statements. An “implicit” redundancy is a redundancy between two statements without a relation
between them making the redundancy explicit. Such a relation is typically an equivalence relation in the
case of total redundancy and an extended specialization relation (e.g., an “example” relation) in the case
of partial redundancy. As illustrated in the previous section, the detection of extended specializations
between two objects reveals an inconsistency or a total/partial redundancy. It is often not necessary to
distinguish between these two cases to reject the newly entered object. Extended “instantiations” (one
example was given in the previous section) are exceptions: they do not reveal an inconsistency or a
total/partial redundancy that needs to be made explicit, since adding an instantiation is giving an example
for a more general statement. It is important to reject an action introducing a redundancy instead of
silently ignoring it because this often permits the author of the action to detect a mistake, a bad
interpretation or a lack of precision (on his part or not). At the very least, this reminds the users that they
should check what has already been represented on a subject before adding something on this subject.

4. If the addition of a new term u1#T by a user u1 introduces an inconsistency with statements of other
users, this action is rejected by the system. Indeed, such a conflict reveals that u1has directly or indirectly
used – and misunderstood - at least one term from another user in his definition of u1#T. The addition by
a user u2 of a definition to u1#T is actually a belief of u2 about the meaning of u1#T. This belief should
be rejected if it is found (logically) inconsistent with the definition(s) of u1#T by u1 (example in Point 6).

5. If the addition, modification or removal of a statement defining an already existing term u1#T by a user
u1 introduces an inconsistency involving statements directly or indirectly re-using u1#T and created or
believed by other users (i.e., users different from u1), u1#T is automatically cloned to solve this conflict
and ensure that the original interpretation of u1#T by these other users is still represented. Indeed, such a
conflict reveals that these other users had a more general interpretation of u1#T than u1 had or now has.
Assuming that u2 is this other user or one of these other users, the term cloning of u1#T consists in
creating u2#T with the same definitions as u1#T except for one, and then replacing u1#T by u2#T in the
statements of u2. The difficulty is to chose a relevant definition to remove for the overall change of the
KB to be minimal. In the case of term removal by u1, term cloning simply means changing the creator's
identifier in this term to the identifier of one of the other users (if this generated term already exists, some
suffix can be added). In a cbwoKB server, since statements point to the terms they use, changing an
identifier does not require changing the statements. In a global virtual cbwoKB distributed on several
servers, identifier changes in one server need to be replicated to other servers using this identifier. Manual
term cloning is also used in knowledge integrations that are not loss-less (Djedidi and Aufaure, 2010).

In a cbwoKB, it is not true that beliefs and term definitions “have to be updated sooner or later”. To
avoid this and to get precise knowledge, in a cbwoKB every belief must be contextualized in space and
time, as in u3#` `75% of bird can be agent of a flight´ in place France and in period 2005
to 2006´ (such contexts are not shown in the other examples of this article). If needed, u3 can associate
the term u3#75%_of_birds_fly__in_France_from_2005_to_2006 with this last belief. Due to the
possibility of contextualizing beliefs, it is rarely necessary to create formal terms such as
u2#Sydney_in_2010. Most common formal terms, e.g., u3#bird and wordnet1.7#bird never need to be
modified by their creators. They are specializations of (or equal to) more general formal terms, e.g.,
wn#bird (the fuzzy concept of bird shared by all versions of the WordNet ontologies; u3#bird refers to
a more precise concept, otherwise u3 would not have created it). What certainly evolves in time is the popularity
of a belief or the popularity of the association between an informal term and a concept. If needed, this
changing popularity can be represented by different statements contextualized in time and space.

6. If adding, modifying or removing a belief introduces an implicit potential conflict (partial/total
inconsistency or redundancy) involving beliefs created by other creators, it is rejected. However, a user
may still represent his belief (say, b1) – and thus “loss-less correct” another user's belief that he does not
believe in (say, b2) – by connecting b1 to b2 via a corrective relation. E.g., here are two FE statements by
u2, each of which corrects a statement made earlier by u1:
u2#` u1#`every bird is agent of a flight´ has for corrective_restriction
 u2#`most healthy flying_bird are able to be agent of a flight´ ´ and

u2#` u1#`every bird can be agent of a flight´ has for
 corrective_generalization u2#`75% of bird can be agent of a flight´ ´.

In the second case, u2's belief generalizes u1's belief and corrects it since otherwise u2 would not have
needed to add it. In the first case, u2's belief specializes u1's belief (except for a quantifier which is
generalized) and corrects it. In both cases, WebKB-2 detects the conflict by simple graph-matching.

If instead of the belief `every bird can be agent of a flight´ (all birds can fly), u1 entered the definition
`any bird can be agent of a flight´, i.e., if he gave a definition to the type named “bird”, there are two cases
(as implied by the rules of the two previous points):

• u1 originally created this type (u1#bird); then, u2's attempt to correct the definition is rejected, or
• u1 added a definition to another user's type, say wn#bird since this WordNet type has no associated

constraint preventing the adding of such a definition; then, i) the types u1#bird and u2#bird
are automatically created as clones (and subtypes of) wn#bird, ii) the definition of u1 is
automatically changed into `any u1#bird is agent of a flight´, and iii) the belief of u2 is
automatically changed into u2#`75% of u2#bird can be agent of a flight´.

In WebKB-2, users are encouraged to provide argumentation relations on corrective relations, i.e., a
meta-statement using argument/objection relations on the statement using the corrective relation.
However, to normalize the shared KB, people are encouraged not to use an objection relation but a
“corrective relation with argument relations on them”. Thus, not only are the objections stated but a
correction is given and may be agreed with by several persons, including the author of the corrected
statement (who may then remove it). Even more importantly, unlike objection relations, most corrective
relations are transitive relations and hence their use permits better organization of argumentation
structures, thus avoiding redundancies and easing information retrieval. The use of corrective relations
makes explicit the disagreement of one user with (his interpretation of) the belief of another user. There is
no inconsistency: an assertion A may be inconsistent with an assertion B but a belief that “A is a
correction of B” is technically consistent with a belief in B. Thus, the shared KB can remain consistent.

For problem-solving purposes, application-dependent choices between contradictory beliefs often
have to be made. To make them, an application designer can exploit i) the statements describing or
evaluating the creators of the beliefs, ii) the corrective/argumentation and specialization relations between
the beliefs, and more generally, iii) their evaluations via meta-statements (see Point 7). For example, an
application designer may choose to select only the most specialized or restricted beliefs of knowledge
providers having worked for more than 10 years in a certain domain. Thus, the approach of this protocol
is unrelated to defeasible logics and avoids the problems associated with classic “version management”
(furthermore, as above explained, in a cbwoKB, formal objects do not have to evolve in time).

This approach assumes that all beliefs can be argued against and hence be “corrected”. This is true
only in a certain sense. Indeed, among beliefs, one can distinguish “observations”, “interpretations”
(“deductions” or “assumptions”; in this approach, axioms are considered to be definitions) and
“preferences”; although all these kinds of beliefs can be false (their authors can lie, make a mistake or
assume a wrong fact), most people would be reluctant to argue against self-referencing beliefs such as
u2#"u2 likes flowers" and u2#"u2 is writing this sentence". The editing protocol of WebKB-2
relies on the reluctance of people to argue against such beliefs that should not be argued against.

7. To support more knowledge filtering or decision making possibilities and lead the users to be careful and
precise in their contributions, a cbwoKB server should propose “default measures” deriving a global
evaluation of each statement/creator from i) users' individual evaluations of these objects, and ii) global
evaluations of these users. These measures should not be hard-coded but explicitly represented (and hence
be executable) to let each user adapt them - i.e., combine their basic functions - according to his goals or
preferences. Indeed, only the user knows the criteria (e.g., originality, popularity, acceptance, ..., number
of arguments without objections on them) and weighting schemes that suit him. Then, since the results of
these evaluations are also statements, they can be exploited by queries on the objects and/or their creators.
Furthermore, before browsing or querying the cbwoKB, a user should be given the opportunity to set
“filters for certain objects not to be displayed (or be displayed only in small fonts)”. These filters may set
conditions on statements about these objects or on the creators of these objects. They are automatically
executed queries over the results of queries. In WebKB-2, filtering is based on a search for extended
specialization, as for conceptual querying. Filters are useful when the user is overwhelmed by information

in an insufficiently organized part of the KB. The KB server Co4 (Euzenat, 1996) also had protocols
based on peer-reviewing for finding consensual knowledge; the result was a hierarchy of KBs, the
uppermost ones containing the most consensual knowledge while the lowermost ones were the private
KBs of contributing users. Establishing “how consensual a belief is” is more flexible in a cbwoKB:
i) each user can design his own global measure for what it means to be consensual, and ii) KBs of
consensual knowledge need not be generated. In any case, the reliability/popularity of user contributions
is collaboratively assessed; this is much more difficult with traditional “static formal file based” approaches.

The approach described by the previous points is incremental and works on semi-formal KBs. Indeed, the
users can set corrective or specialization relations between objects even when the system does not detect an
inconsistency or redundancy. As noted, a new informal statement must be connected via an argumentation
relation (e.g., a corrective relation) or an extended specialization relation to an already stored statement. For
this relation to be correct, this new statement should generally not be composed of several sub-statements.
However, allowing the storing of (small) paragraphs within a statement eases the incremental transformation
of informal knowledge into (semi-)formal knowledge and allows doing so only when needed. This is
necessary for the general acceptance of the approach. The techniques described in this article work do not
seem particularly difficult for information technology amateurs, since the minimum they require is for the
users to set the above mentioned relations from/to each term or statement. Hence, these techniques could be
used in semantic wikis to avoid their governance problems cited in the introduction and other problems caused
by their lack of structure. More generally, the presented approach removes or reduces the file-based approach
problems listed in the previous section, without creating new problems. Its use would allow merging of (the
information discussed or provided by the members of) many communities with similar interests, e.g., the
numerous different communities working on the Semantic Web.

5. EXAMPLES OF APPLICATIONS IN TEACHING

WebKB-2 has been used for integrating many ontologies (Martin, 2003, 2009) and representing many
domains. In particular, it has been used for representing and inter-connecting the most important concepts of
four different courses that I gave: “Workflow Management”, “Systems Analysis & Design”, “Introduction to
Multimedia” and “Client-Server Architecture”. Nearly each sentence of each slide for these courses has been
represented into a semantic network of tasks, data structures, properties, definitions, etc. Figure 1 shows an
extract of a Web file that was an input file for WebKB-2 and that mixed formal and informal elements; the
formal ones are in the FL notation and represent important statements (here, relations between important
concepts) from a book in Workflow Management. Figure 2 shows an example of results to a query. Each FL
statement in these figures follow the generic schema:
 CONCEPT1 RELATION1: CONCEPT2 CONCEPT3,
 RELATION2: CONCEPT4 (sourceForRel2) ...;

Such a statement should be read: “any CONCEPT1 may have for RELATION1 one or many CONCEPT2, and may
have for RELATION1 one or many CONCEPT3, and may have for RELATION2 one or many CONCEPT4 (relation
which can be found at sourceForRel2), ...”. The sources of those relations in the book and the persons who
created those representations (e.g., pm and the student s162557) are indicated. When the creator of a relation is
not indicated, I (the user “pm”) was the creator.

The students of these courses have recognised the help that the semantic network provided them in relating
and comparing information otherwise scattered in many different slides and other lecture materials (an
analysis of their evaluation of this teaching approach is given by Martin (2009)). However, having to learn the
FL notation was perceived as a problem, especially by the students who were evaluated on their contributions
to the semantic network. An intuitive table-based knowledge entering/display interface for FL should reduce
this problem. Compared to an informal “learning journal”, evaluating the students on their contributions to the
semantic network permitted a much better evaluation of whether or not they understood the nature of the
important concepts and their relationships. To enter these contributions, i.e., to collaboratively complete the
initial “course formal summary (semantic network)” that I designed for them, the students used WebKB-2. For
the students, the KB editing protocols were not a problem but entering meaningful knowledge representations
proved to be very difficult. This highlighted the necessity for a very strong and very advanced semantic
checking. Due to its knowledge normalization procedures, WebKB-2 enforces stronger semantic checks than

RDF+OWL inference engines but this still proved to be very insufficient.

Figure 2. Command to display the specializations of a
 type, followed by its first result:
 wfm#workflow_management
 (here, this type is displayed along with
 some of its related objects using an
 informal format looking like FL)

Figure 1. Extract from an input file including some
 formal representations of representing statements
 from a book in Workflow Management
 (here referred to by the variable $book)

6. CONCLUSION

This article first aimed to show that a cbwoKB is technically and socially possible. To that end, the fourth (and
main) section of this article presented a protocol permitting, enforcing or encouraging people to incrementally
interconnect their knowledge into a well-organized (formal or semi-formal) KB without having to discuss and
agree on terminology or beliefs. As noted, it seems that all other knowledge-based cooperation protocols that
currently exists work on the comparison or integration of whole KBs, not on the comparison and loss-less
integration of all their objects into a same KB. Other required elements for a cbwoKB - and for which
WebKB-2 implements research results - were also mentioned: expressive and normalizing notations,
methodological guidance, a large general ontology, and an initial cbwoKB core for the application domain of
the intended cbwoKB. Already explored kinds of applications were cited. One currently explored is the
collaborative representation and classification by Semantic Web experts of “Semantic Web related
techniques”. More generally, the approach seems interesting for collaboratively-built corporate memories or
catalogues, e-learning, e-government, e-science, e-research, etc. Hillis (2004) describes a “Knowledge Web”
to which teachers and researchers could add “isolated ideas” and “single explanations” at the right place, and
suggests that this Knowledge Web could and should “include the mechanisms for credit assignment, usage
tracking and annotation that the Web lacks” (pp. 4-5). Hillis did not give hints on what such mechanisms could
be. The cbwoKB elements described by this article can be seen as a basis for such mechanisms.

A second aim of this article (mainly via Section 2) was to show that - in the long term or when creating a
new KB for general knowledge sharing purposes - using a cbwoKB does/can provide more possibilities, with
on the whole no more costs, than the mainstream approach (Shadbolt et al, 2006; Bizer et al., 2010) where
knowledge creation and re-use involves searching, merging and creating (semi-)independent (relatively
small) ontologies or semi-formal documents. The problem - and related debate - is more social (which
formalism and methodology will people accept to learn and use?) than technical. A cbwoKB is much more
likely to be adopted by a small communities of researchers but could incrementally grow to a larger and
larger community. In any case, research on the two approaches are complementary: i) techniques of
knowledge extraction or merging ease the creation of a cbwoKB, and ii) the results of applying these
techniques with a cbwoKB as input would be better, and iii) these results would be easier to retrieve,
compare, combine and re-use if they were stored in a cbwoKB.

REFERENCES

Bizer, C. et al, 2010. Linked data - the story so far. In International Journal on Semantic Web and Information Systems,
5, Vol. 3, pp. 1-22.

Casanovas, P. et al, 2007. Opjk and diligent: ontology modeling in a distributed environment. In Artificial Intelligence
Law, 15, vol. 2, pp. 171-186.

Chein, M. and Mugnier, M.-L., 1997. Positive nested conceptual graphs. Proceedings of ICCS 1997, LNAI 1257, pp. 95-
109.

Djedidi R. and Aufaure A., 2010. Define Hybrid Class Resolving Disjointness due to Subsumption.
http://ontologydesignpatterns.org/wiki/Submissions:Define_Hybrid_Class_Resolving_Disjointness_due_to_Subsumption

Dromey, G.R., 2006. Scaleable Formalization of Imperfect Knowledge. Proceedings of AWCVS-2006, 1st Asian Working
Conference on Verified Software, Macao SAR, China, October 29-31 2006.

Euzenat, J., 1996. Corporate memory through cooperative creation of knowledge bases and hyper-documents.
Proceedings of KAW 1996, pp. (36)1-18.

Euzenat, J. et al, 2009. Sharing resources through ontology alignment in a semantic peer-to-peer system. In Cases on
semantic interoperability for information systems integration: practice and applications, pp. 107-126.

Hillis, W.D. Aristotle (the knowledge web). Edge Foundation, Inc., 138, May 6, 2004.
Martin, Ph. and Eboueya, M., 2008. For the ultimate accessibility and re-usability. Chapter 29 (14 pages) of the

Handbook of Research on Learning Design and Learning Objects: Issues, Applications and Technologies, IGI
Global, pp. 589-606.

Martin, Ph., 2003. Correction and Extension of WordNet 1.7. Proceedings of ICCS 2003, Springer Verlag, LNAI 2746,
pp. 160-173.

Martin, Ph., 2007. Managing Knowledge to Enhance Learning. International Journal of Knowledge Management & E-
Learning (ISSN 2073-7904), Vol.1, No.2, 2009, pp. 103-119.

http://ontologydesignpatterns.org/wiki/Submissions:Define_Hybrid_Class_Resolving_Disjointness_due_to_Subsumption

Martin, Ph., 2009. Towards a collaboratively-built knowledge base of&for scalable knowledge sharing and retrieval.
HDR thesis ("Habilitation to Direct Research"; 240 pages), University of La Réunion, France, December 8, 2009.

Noy, N.F., Tudorache, T., 2008. Collaborative ontology development on the (semantic) web. Proceedings of the AAI
Spring Symposium on Semantic Web and Knowledge Engineering (SWKE 2008).

Palma, R., et al, 2008. Propagation models and strategies. Deliverable 1.3.1 of NeOn - Lifecycle Support for Networked
Ontologies; NEON EU-IST-2005-027595.

Shadbolt, N. et al, 2006. The semantic web revisited. In IEEE Intelligent Systems, 21, Vol. 3, pp. 96-101.
Sowa, J., 2005. Theories, models, reasoning, language, and truth. http://www.jfsowa.com/logic/theories.htm

