
General Knowledge Representation And Sharing
For Disaster Management

Philippe A. Martin 1[0000-0002-6793-8760] and Tullio J. Tanzi 2[0000-0001-5534-7712]

1 EA2525 LIM, University of La Réunion, F-97490 Sainte Clotilde, France
philippe.martin@univ-reunion.fr

2 LTCI, Télécom Paris, Institut Polytechnique de Paris, Paris, France
tullio.tanzi@telecom-paris.fr

Abstract. The first part of this article first distinguishes “restricted knowledge representation
(KR) and sharing (KS)” and the still seldom researched task of “general KR and KS”. This
parts then highlights the usefulness of the latter for disaster management, and provides a
panorama of complementary techniques supporting it. The research question that these tech-
niques collectively answer is: how to let Web users collaboratively build KBs (KR bases) i) that
are not implicitly “partially redundant or inconsistent” internally or with each other, ii) that are
complete with respect to certain criteria or subjects, iii) without restricting what the users can
enter nor forcing them to agree on terminology or beliefs, and iv) without requiring people to
duplicate knowledge in various KBs, or manually search knowledge in various KBs and aggre-
gate knowledge from various KBs? In a second part, this article shows the way various kinds of
disaster management related information can be categorized or represented for general KS pur-
poses, e.g. terminologies and information objects (these objects are rarely represented via KRs;
examples about Search & Rescue procedures are given).

Keywords: Disaster Management, Knowledge Sharing, Ontology.

1 Introduction

Disaster management, e.g. disaster risk reduction or Search & Rescue operations, re-
quires many resources, e.g. certain kinds of people, search robots, maps, communica-
tion tools, detection devices, search procedures and search software. It also depends
on many parameters, e.g. the available resources, the nature of the disaster, the terrain
and the weather. Ideally, all published information on all these elements would be
stored, related and organized on the Web in places and in ways permitting people and
software agents to i) retrieve and compare them according to any set of criteria, and
ii) complement the stored information in ways that maintain its degree of organization
and hence retrievability.

Such an ideal and scalable organization of information implies the building and ex-
ploitation of knowledge representation bases: KR bases or simply KBs. KBs store
KRs (alias, knowledge), i.e. semantic and logic-based representations of information.
In this article, KRs is opposed to data, i.e. information merely organized by prede-
fined structural relations (i.e. partOf ones) and semantic relations of very few prede-
fined types (mostly typeOf relations). In KBs, all the types (i.e. relation types and con-

http://www.eurecom.fr/en/people/tanzi-tullio
http://www.webkb.org/kb/nit/o_risk/risk_article.html
http://www.webkb.org/kb/nit/o_risk/risk_article.html

2

cept types) and their definitions are user-provided: most of the knowledge in many
KBs are expressed via the definitions. Document based technologies and database
systems only handle data, although deductive databases are steps towards KBs. A KB
is composed of an ontology and a base of facts. An ontology is i) the set of terms used
in representations within KBs, along with ii) representations of term definitions,
hence semantic relations between the terms. Natural language based documents or
databases cannot automatically be converted into KBs that are well-organized via
generalization (and part-of) relations, if only because they often lack the necessary
information for even human readers to derive such relations. This organization – and
hence, manually or semi-automatically built KBs – is necessary to support i) seman-
tic-based searches, via queries or navigation, and ii) any scalable organization or inte-
gration of information. This is why methodologies or architectures for building on-
tologies or ontology based systems, and their advantages, have already often been dis-
cussed in relation to disaster management related information. E.g., in July 2020, the
digital library of IFIP (International Federation for Information Processing) included
12 articles about ontologies and “risk or disaster or emergency”, while the digital li-
brary of the ISCRAM conferences (“Information Systems for Crisis Response and
Management” conferences) included 46 articles in which “ontology” was recorded as
a keyword.

There are some top-level ontologies related to disaster management, e.g. SEMA4A
[5] (the purpose of which is to help alerting people of imminent disasters) and em-
pathi [3] which is more general and integrates some other top-level ontologies. How-
ever, as of 2020, there does not appear to be any publicly accessible large content on-
tology about information related to disaster management, let alone KBs in which peo-
ple or organizations could relate or aggregate information. For instance, even though
[14] mentions past “massive efforts e.g. in European projects such as DISASTER
(disaster-fp7.eu), SecInCoRe (www.secincore.eu), EPISECC (www.episecc.eu), or
CRISP (www.crispproject.eu)”, only the second and third project Web pages of this
list are now accessible, and the results of these projects are not KBs but reports about
planned works and advocated architectures or small models (top-level ontologies).
Some other large projects such as the Norwegian INSITU (Sharing Incident and
Threat Information for Common Situational Understanding) project (2019-2022) [13]
focus more on terminology harmonisation as well as tools for the collaborative syn-
thesis of information in classic media (textual documents, databases, maps, ...), hence
not information synthesis via KBs. The use of classic media make terminology har-
monisation useful for lexical searches but this harmonisation is a complex task requir-
ing committees (hence centralization) and it is useful only when its guidelines are fol-
lowed (which is not easy to do). With KBs, such terminology harmonisation is not
necessary: relations of generalisation or equivalence between terms within KBs or
across KBs can be added in a decentralized and incremental way by each term
provider or knowledge provider. Thanks to these relations, people can use the terms
they wish without decreasing knowledge retrievability.

There are two meanings for “knowledge sharing” (KS). “Restricted KS” is quite re-
lated to data(base) sharing: it is about i) easing the exchange of information (data or
KRs) between particular agents (persons, businesses or applications) that can discuss

https://w3id.org/empathi/
https://w3id.org/empathi/
https://www.researchgate.net/profile/Sofie_Pilemalm/publication/333824778_SHARING_INFORMATION_FOR_COMMON_SITUATIONAL_UNDERSTANDING_IN_EMERGENCY_RESPONSE/links/5d0793d792851cfcc61d2b1d/SHARING-INFORMATION-FOR-COMMON-SITUATIONAL-UNDERSTANDING-IN-EMERGENCY-RESPONSE.pdf
https://www.researchgate.net/profile/Sofie_Pilemalm/publication/333824778_SHARING_INFORMATION_FOR_COMMON_SITUATIONAL_UNDERSTANDING_IN_EMERGENCY_RESPONSE/links/5d0793d792851cfcc61d2b1d/SHARING-INFORMATION-FOR-COMMON-SITUATIONAL-UNDERSTANDING-IN-EMERGENCY-RESPONSE.pdf
https://www.researchgate.net/profile/Sofie_Pilemalm/publication/333824778_SHARING_INFORMATION_FOR_COMMON_SITUATIONAL_UNDERSTANDING_IN_EMERGENCY_RESPONSE/links/5d0793d792851cfcc61d2b1d/SHARING-INFORMATION-FOR-COMMON-SITUATIONAL-UNDERSTANDING-IN-EMERGENCY-RESPONSE.pdf
https://www.researchgate.net/profile/Sofie_Pilemalm/publication/333824778_SHARING_INFORMATION_FOR_COMMON_SITUATIONAL_UNDERSTANDING_IN_EMERGENCY_RESPONSE/links/5d0793d792851cfcc61d2b1d/SHARING-INFORMATION-FOR-COMMON-SITUATIONAL-UNDERSTANDING-IN-EMERGENCY-RESPONSE.pdf
http://www.episecc.eu/
http://www.secincore.eu/
http://idl.iscram.org/
http://idl.iscram.org/
http://idl.iscram.org/
https://hal.inria.fr/IFIP/search/index/?qa%5Bkeyword_t%5D%5B%5D=ontologies+or+ontology&qa%5Btext%5D%5B%5D=risk+or+disaster+or+emergency&qa%5Btext%5D%5B%5D=&submit_advanced=Search&docType_s=COMM+OR+OUV+OR+COUV+OR+DOUV+OR+REPORT&submitType_s=file&rows=30

3

to solve ambiguities or other problems, and ii) the full or efficient exploitation of the
information by these particular agents. “General KS” is about people representing or
relating information within or between KBs in ways that maximize the retrievability
and exploitation of the information by any person and application. These two mean-
ings are very rarely explicitly distinguished, including by the World Wide Web Con-
sortium (W3C). Regarding KS, the W3C has a “Semantic Web vision of a Web of
Linked data [17]”. As the name may suggest, and as explained in Section 2, the vision
and techniques proposed by the W3C are mainly focused on restricted KS. Risk man-
agement related research articles that advocate the use of KBs, e.g. [2] and [4], rely on
the W3C approach or techniques. However, they are insufficient for (general) KS in
disaster management, if only given the amount of potentially useful information for
such a management. This insufficiency is also one reason for the above cited lack of
large publicly accessible content ontologies or KBs related to disaster management.

Section 2 summarizes complementary ways to support general KS and the above
cited ideal. By doing so, Section 2 also explains different aspects of the above cited
insufficiency. The originality of Section 2 is mainly in the synthesis or panorama it-
self, more than in the description depth of the cited or introduced techniques, because
the first author has separately published on several of these techniques. However, new
elements have been introduced and these techniques are original wrt. disaster manage-
ment related articles. Furthermore, these techniques or ways to support general KS
collectively answer the following research question: how to let Web users collabora-
tively build KBs i) that are not implicitly “partially redundant or inconsistent” inter-
nally or with each other, ii) that are complete with respect to certain criteria or sub-
jects, iii) without restricting what the users can enter nor forcing them to agree on ter-
minology or beliefs, and iv) without requiring people to duplicate knowledge in vari-
ous KBs, or to manually search knowledge in various KBs and aggregate knowledge
from various KBs?

Using various examples, Section 3, the second part of this article, shows the way
various kinds of disaster management related information can be categorized or repre-
sented for general KS purposes. Section 3.1 illustrates the representation and organi-
zation of a small terminology, and the advantages of performing such tasks. Sec-
tion 3.2 gives a general model to represent and organize Search & Rescue informa-
tion; the illustrated originality is the handling of information objects. Section 3.3
gives KRs about automatic explorations of a disaster area, e.g. by a rover; the illus-
trated originality is the representation of procedures. http://www.webkb.org/kb/nit/
o_risk/ gives access to the full representations that these sections illustrate, as well as
other ones: representations synthesizing and organizing the important content of three
related articles about how to create rovers adapted to a terrain, the biggest article be-
ing [15].

https://www.w3.org/standards/semanticweb/
https://www.w3.org/standards/semanticweb/
https://www.w3.org/standards/semanticweb/
https://www.w3.org/standards/semanticweb/
https://www.w3.org/standards/semanticweb/

4

2 Complementary Ways to Support General Knowledge Sharing

2.1 Tools To Import & Export Any Kind Of Knowledge, Even In User
Specified Formal Languages

Knowledge representations (KRs) are logic statements. For graph-oriented models, KRs
are concept nodes (i.e. possibly quantified instances of some types) possibly connected
by relation nodes (existentially quantified instances of relation types). The non-prede-
fined terms in KRs are defined or declared in ontologies by knowledge providers and
are identifiers of either individuals (type instances that cannot have instances) or types.
Types are either relation types or concept types. Section 3 gives examples.

Regarding KR languages (KRLs), the W3C proposes i) some ontologies of logic
models – e.g. RDF for the simplest formulas (the existential quantified conjunctive
ones), OWL for the SROIQ description logic, RIF for rule-based more expressive clas-
sic logics – and ii) some notations for some models, e.g. the notations RDF/XML,
RDF/Turtle and RIF/XML. There are other standards for KR logic models, e.g. Com-
mon Logic (CL, the ISO/IEC 1st-order logic model), with various notations for them,
e.g. CL/XML (XCL). However, as described by the next two paragraphs, all these
KRLs have problems for general KS, hence for general disaster management purposes.

The first problem of these KRLs is their expressiveness restrictions. Although
these restrictions ensure that what is represented has particular interesting properties
(e.g. efficiency properties), this is at the cost of preventing the representation of some
information: some KRs are either not written, hence not shared, or written in ways
that are ad hoc, biased or imprecise, hence in far less exploitable ways. For general KS,
using expressive KRs has often no downside since, whichever their expressiveness,
KRs can be translated into less expressive ones, often automatically, to fit the need of
a particular application, by discarding the information that this application does not
handle or require. On the other hand, KRs designed for particular applications are of-
ten unfit (too biased, ...) for other ones. Since present or future disaster management is
not a fixed list of known applications, expressiveness restrictions limit it.

Another important problem of these KRLs is that they are not high-level in the
sense that they do not allow “normalized and easy to read or write” representations
for many useful notions such as meta-statements, numerical quantifiers and interpreta-
tions of relations from collections. Thus, even when representing similar information,
different KRs written in different languages or by different users are difficult to trans-
late and match automatically, and hence to search or aggregate. The use of ontology
design patterns (e.g. those of [1]) by knowledge providers only very partially ad-
dresses these issues and is difficult, hence rarely performed. Furthermore, for differ-
ent domains or applications, different notions and different ways to write them are
useful. Creating or visualizing KRs via the current KR editors is even more restricting
in terms of what can be expressed and displayed. E.g., graphics take a lot of space and
hence do not allow people to simultaneously see and hence visually compare a lot of
KRs (this is problematic for KR browsing and understanding).

One answer to these problems was i) FL [8], a very expressive, concise and config-
urable textual notation for KRs, and ii) FE [6], a more verbose version of FL which

5

looks like English and hence is more easily read by non-experts. A complementary
and more general answer is the creation of an ontology of not only model components
for logics but also of notation components for them. KRLO (KRL ontology) [10] is a
core for such an ontology: it allows people to specify any KR language they wish.
Software modules that exploit such an ontology are currently being designed. With
these modules, KB systems will be able to import and export from, to or between any
such specified KR languages, and hence also perform certain kinds of KR translations
(furthermore, since the rules for these translations are also specified in the ontology,
tool users may select the rules to apply and they may also complement these rules).

2.2 General-purpose Ontologies Merging Top-level Ontologies and Lexical Ones

Top-level ontologies define types that support and guide the representation, organiza-
tion and checking of KBs. Lexical ontologies organize and partially define the mean-
ings of common words and relate these meanings to these words. Both kinds (top-level
ones and lexical ones) are domain-independent, hence reusable for disaster manage-
ment. The more types from such ontologies a KB reuse, the easier it is to create and or-
ganize its content and the more this content can be retrieved via these types. The more
types from such ontologies two independently created KBs share and are based on, the
easier the content of these two KBs can be aligned or fully integrated. Since such on-
tologies are sets of definitions, not assertions of facts or beliefs, inconsistencies between
them are signs of conceptual mistakes, e.g. misinterpretations or over-restrictions. Thus,
when not fully redundant, such ontologies are complementary and, possibly after some
corrections, may be merged without leading to inconsistencies.

The Multi-Source Ontology (MSO) [7] is one step towards such a merged ontol-
ogy. It already merges many top-level ontologies and a lexical ontology derived from
WordNet. More will be added. Unlike for other merges, Web users can cooperatively
complement and improve the MSO via the methods described in the next subsection.
In accordance with these methods, the top-level of the MSO has already been orga-
nized via subtype partitions, and hence has advantages similar to those of a decision
tree for knowledge retrieval and inference purposes. Furthermore, the MSO includes
KRLO and hence types that are interesting for representing or categorizing procedures
or software. As illustrated in Section 3.2, this last point is useful too for disaster man-
agement purposes.

2.3 KB Servers That Support Non-restricting KB Sharing By Web Users

For general KS, a KB should not include two statements logically inconsistent with
one another, since classic logics – and hence most inference engines – cannot handle
KBs that are logically inconsistent. Yet, different users of a shared KB may want to
enter statements that happen to be inconsistent with each other. For general KS, the
avoidance of inconsistencies in a shared KB cannot be done by the owner(s) of each
shared KB accepting or not each statement submitted to the KB: this not only defeats
the purpose (“general KS”), this is also a too slow and arbitrary process to be scal-
able. Automatically dispatching submitted statements into various KBs for each one

6

to be internally consistent, is also not scalable: with such a method, the number of re-
quired KBs and redundancies between KBs can grow exponentially.

The solution starts by associating each term and each statement to its source (docu-
ment or author). For terms, this is now standard practice: the W3C advocates the sys-
tematic use of URLs, with the possible use of abbreviations for the sources, but there
are other more flexible and scalable solutions. For statements, making this association
is recognizing that facts in KBs are actually beliefs; this may be formalized using
meta-statements that contextualize statements according to who created them or be-
lieve in them. (Unfortunately, the W3C has not yet made recommendations regarding
this last point and OWL does not handle meta-statements). In such KBs, statements
may be seen as either “beliefs” or “definitions”. Since these last ones are tied to a
term, they cannot be false, i.e. they are true “by definitions”: the meaning of the term
is whatever its definitions specify. E.g., assuming that pm identifies a particular user in
a KB, then pm has the right to create the term pm:Table (this term identifier uses the
term prefixing syntax usable in most W3C KRLs) and define it as a type for flying
objects rather than as a type of furniture. Thus, definitions need not be contextualized
to avoid inconsistencies.

Contextualizing beliefs may avoid direct inconsistencies but is not sufficient to avoid
conceptual conflicts nor relate possibly conflicting or partially redundant statements.
E.g., a relation between the statements “according to user X, birds fly” and “according
to user Y, healthy adult carinate birds can fly” is necessary to state whether the second
statement is a correction (by Y) of the first statement, or if the first statement is a correc-
tion (by X) of the second statement. Such a relation can then be exploited by each user
(according to preferences and application requirements) for manually or automatically
selecting which statement should be exploited by an inference engine if it has to choose
between the two. For knowledge retrieval purposes, a choice may not have to be made
since, when the two statements are potential answers to a query, returning both, con-
nected by their relation, may be a good and informative result. One user-specified strat-
egy of automatic exploitation strategy may be: “when statements conflict and when their
authors are all trustable, select the most corrected statements according to their inter-re-
lations and then, if conflicts remain, give the result of the inferences for each selectable
combination of non-conflicting set of statements”.

The above approach is further detailed and implemented in the shared KB editing
protocol of the WebKB-2 server [9]. It handles any KB sharing conflict via the addition
of relations to the KB. E.g, terms or relations which are made obsolete by their creators
but used by other agents are not fully removed but contextualized in a way that indicates
i) for terms, who are their new owners, and ii) for relations, who does not believe in
them anymore. Regarding additions to the KB, the main rule is that, when the addition
of a statement to the shared KB would lead to a potential conflict or implicit redundancy
with already stored statements, the protocol asks for the new one to be directly or indi-
rectly related to each of those stored ones by a relation of one of the following types:
“pm:non-corrective_=>”, “pm:non-corrective_<=”, “pm:corrective_=>”, “pm:cor-
rective_<=”, “pm:corrective_reformulation”, “pm:corrective_exclusion”,
“pm:corrective_alternative” and “pm:statement_instantiation”. Since these re-
lation types either specialize the generalized implication relation type “pm:correc-

7

tive-or-non-corrective_=>”, (which is transitive) or its exclusion (the type
“pm:implication_exclusion”, alias “pm:=>!”), i) the protocol leads all the state-
ments of the KB to be organized into a hierarchy based on this generalized relation
type, and ii) all the potentially redundant or conflicting statements are (directly or
transitively) connected via this generalized implication relation or its exclusion. These
last two points are useful for inferences, checks and quality evaluations of the KB.
Since people can use the above cited relations even when an inference engine is not
able to detect potential conflicts or implicit redundancies, people may use such rela-
tions between informal statements within a KB or a semantic wiki. Thus, the approach
may also be used to organize the content of a semantic wiki and avoid or solve edit
wars in it. To conclude, this approach works with any kind of knowledge, does not ar-
bitrarily constrain what people can represent and store (within the constraints of any
automatically enforceable topic or KB scope), and keeps the KB organized, at least
insofar as the used inference engine can detect inconsistencies or redundancies.

2.4 KB Servers That Support Networked KBs

As hinted in the first paragraph of the introduction, the amount of information that can
be valuable for risk management is huge (and can be used for many other purposes).
That information cannot be stored into a single individual KB (alias, physical KB), i.e.
a KB which i) has an associated KB server storing it, and hence, ii) unlike a networked
KB (alias, virtual KB), is not composed of a network of individual KBs exchanging
information or forwarding queries via the KB servers associated with these KBs. As
also hinted in the introduction, the W3C does not make any recommendation about
networked KBs, it solely advises the authors of KBs to relate the terms of their KBs to
those of some other KBs. Yet, the more knowledge is added to independently or semi-
independently developed KBs, i) the more implicit redundancies and inconsistencies
they have between them, ii) the harder it is to fix these problems, and iii) each user
that wants to reuse these KBs has to (re-)do this work.

For reasons similar to those given in the previous (sub-)sections, for a networked
KB to be scalable and interesting for general KS purposes, i) its total content, i.e. the
sum of its component KBs, should be as organized as if it was stored in an individual
shared KB with the properties described in the previous subsection, ii) neither the
repartition of the KRs amongst the KBs, nor adding one's own individual KB to a net-
worked KB, should depend on a central authority (automated or not), and iii) no user
of the networked KB should have to know which component individual KB(s) to
query or add to. Hence, ideally, i) there would exist at least one networked KB orga-
nizing all KRs on the Web, and ii) additions or queries to one KB server would be au-
tomatically forwarded to the relevant KB servers. In distributed or federated data-
bases, the protocols that exchange information or forward queries exploit the fact that
each individual database has a known and fixed (small) schema. These database
schema based protocols cannot be directly adapted to networked KBs since the coun-
terpart of a database schema in a KB is its ontology, which is generally large and of-
ten modified by the KB contributors. Many architectures advocated in disaster man-
agement related articles, e.g. those of [2] are based on – or related to those of – dis-

8

tributed or federated databases. Extending the classic peer-to-peer protocols by taking
into account the ontologies of the component individual KBs is also not scalable:
i) this either implies a “database schema based”-like solution (and then the ontologies
can hardly be modified) or a centralization mechanism, and ii) this does not address
potential implicit redundancies and inconsistencies between KBs.

To satisfy all the above cited constraints, the solution proposed by [8] is based on the
notions of “(individual KB) scope” and “nexus for a scope”. The rest of this section
presents the underlying ideas of a recently extended version of this solution. An inten-
sional scope is a specification (via a KR) of the kinds of objects (terms and KRs) that
the server handling an individual KB is committed to accept from Web users. This
scope is decided by the owner of the shared individual KB. An intensional core scope is
the part of an intensional scope specifying the kinds of objects that a server is commit-
ted to accept even if, for each of these kinds of objects, another intensional core scope
on the Web also includes this kind of objects (i.e., if at least another server has made the
same storage commitment for this kind of objects). An extensional scope is a structured
textual document that lists each formal term (of the ontology from the individual KB)
using a normalized expression of the form: “<formal-term-main-identifier>__scope
<URL_of_the_KB>”. This format permits KB servers to exploit Google-like search en-
gines for knowing which KBs store a particular term. A (scope) nexus is a KB server
that has publicly published its intensional and extensional scopes on the Web, and has
also specified in its non-core intensional scope that it is committed to accept storing the
following kinds of terms and KRs whenever they do not fall in the scope of another ex-
isting nexus: i) the subtypes, supertypes, types, instances of each type covered by its in-
tensional scope, and ii) the direct relations from each of these last objects (that are
stored in this KB only as long as no other nexus stores them). (The WebKB-2
server that hosts the MSO is a nexus that has at least the MSO has intensional scope.
Thus, this server can be used by any networked KB as one possible nexus for non-do-
main specific terms and KRs.) Then, “the joining of an individual KB (server) to a
networked KB” simply means that the KB server is being committed not only to be a
nexus for its intensional scope but also to perform the following tasks whenever a
command (query or update) is submitted to the KB server:

 The first task is, insofar as the intensional scope allows it, to handle this com-
mand internally via the KB sharing protocol of WebKB-2 or another protocol
with better properties. For efficiency reasons, when an object is in the core in-
tensional scope but is related to other objects that are not in it, each of these
other objects should be associated to the URL of another KB server that has
this object within its core intensional scope.

 The second task is to forward this command to the KB servers which, given
their scopes, may handle it, at least partly. These servers are retrieved via the
above cited URLs and/or exploitation of a Google-like search engine.

Via this propagation, the commands are forwarded to all nexus that can handle them,
and no KB server has to store all the terms of all the KBs, even for interpreting the pub-
lished nexus scopes. To counterbalance the fact that some KR forwardings may be lost
or not correctly performed, i.e. that this “push-based strategy” may not always work,
each KB server may also search other nexus having scopes overlapping its own scopes

9

and then import some KRs from these nexus (this is the complementary “pull-based
strategy”). Thus, KB servers with overlapping scopes have overlapping content but this
redundancy is not implicit and hence not harmful for inference purposes.

3 Examples Of Representations For General Knowledge Sharing

In this section, for concision and clarity purposes, the FL notation [8] is used, not a
W3C KRL notation. Regarding identifiers, the difference is minimal: the namespace
prefixing separator is “#” (as in pm#Table) instead of “:” (as in pm:Table), since “:” is
instead used to delimit relation nodes, as in most frame-based KRLs.

3.1 Organization of a Small Terminology About Disaster Risk Reduction

In 2017, the UNDRR (United Nations office for Disaster Risk Reduction) has defined a
“terminology about disaster risk reduction [16]” which is here referred to as “UndrrT”.
[11] is a Web document that represents UndrrT via the FL KRL and, as illustrated by
Fig. 1 and Box 1, organizes it into a subtype hierarchy using i) subtype partitions or

 pm#Process

 pm#undrrT#Disaster_risk_handling pm#object 1..* undrr#Disaster_risk

 partOf+supertype
 {disjoint, not complete}

undrrT#Disaster_risk_assesment

undrr#Disaster_risk_reduction 1..* pm#goal undrrT#Disaster_risk_management

 undrrT#Prospective_disaster_risk_management
 undrrT#Corrective_disaster_risk_management
 undrrT#Compensatory_disaster_risk_management undrrT#Mitigation
 undrrT#Community-based_disaster_risk_management
 pm#equivalent-to

 undrrT#Local-and-indigenous-peoples_disaster_risk_management
 pm#undrrT#Disaster_mitigation

Legend: the graphic syntax of UML (the Uniform Modeling Language [12]) is used for
 * supertype relations: the untyped upward relations; for the other relations, the type name is in italics;
 * relation cardinalities (e.g. "1..*"), i.e. quantifiers for the destination nodes (the quantifier for the source
 node of these relations is implicit: it is always the universal quantifier);
* the “{disjoint, not complete}” specification for the first above set of subtypes: the types in this set are

 exclusive but the set is not complete and hence it is not a subtype partition.
 For others details, see Box 1.

Fig. 1. UML-like representation of the relations represented with FL in Box 1

https://www.undrr.org/
https://www.preventionweb.net/publications/view/51748
https://www.preventionweb.net/publications/view/51748
https://www.preventionweb.net/publications/view/51748

10

exclusions, whenever possible, ii) the top-level concept types of the MSO, and iii) a few
additional types when really needed for categorization purposes. This Web document is
also structured into sections and subsections according to some of the MSO types, in a
systematic and non-subjective way. All these points make the terms and relations be-
tween the terms in UndrrT much easier to understand and retrieve (via queries or by
following relations) than in the UNDRR document where they are listed in alphabetic
order and only informally defined.

The above first and second points also support some automatic checking of the way
these terms are specialized or used in KRs, to detect whether some of their meaning has
been misinterpreted. E.g., instances of undrrT#Disaster_risk_management can only be
sources of relations the signature of which has undrrT#Disaster_risk_management or
one of its supertypes as the first parameter. Since one of these supertypes is
pm#Process, and since the MSO provides many types of relations from pm#Process
(e.g. pm#object, pm#parameter, pm#duration, pm#agent, pm#experiencer, etc.), these
relations can be used from instances of undrrT#Disaster_risk_management.

Representing UndrrT via the MSO also highlighted important ambiguities that the
sometimes lengthy informal definitions associated with the terms did not help resolve.
E.g., are the types undrr#Exposure, undrr#Vulnerability and undrr#Resilience
supposed to be subtypes of pm#Characteristic_or_dimension_or_measure or of
pm#State ? In [11], the first option has been chosen because it eases the use of such
types in KRs but other users of UndrrT may have used such terms as if they repre-
sented states. The two interpretations are exclusive: they cannot be reconciled. Thus,
such ambiguities clearly limit general KS.

Box 1. Commented extract of the FL representation of the UNDRR terminology (same content
as in Fig. 1: this extract does not include relations for informal definitions and annotations but
here has many comments explaining the meaning of the used abbreviations and FL expressions)

//Comments are prefixed by "//" and here in italics; the FL namespace separator is '#', not ':'.
pm#undrrT#Disaster_risk_handling //"pm#undrrT#": the type, created by pm, was implicit in UndrrT
 /̂ pm#Process, //"/̂ " or " ": supertype relation in FL↗
 pm#object: 1..* undrr#Disaster_risk, //"1..*": one or several
 \.part: //"subtype relation" and "part relation between the instances of the connected types"
 e{ //In addition to be destinations of "\.part", the next two types are exclusive: "e{...}"
 undrrT#Disaster_risk_assesment
 (undrrT#Disaster_risk_management //"(...)": isolation of relations starting from this type
 pm#goal: 1..* (undrrT#Disaster_risk_reduction
 pm#parameter: 0..* undrrT#Disaster_risk_reduction_strategy_or_policy),
 \. //"\." or " ": subtype relation in FL↘
 //No "e{ ...}" here since the following subtypes are not necessarily exclusive
 undrrT#Prospective_disaster_risk_management //This type and its next four siblings
 undrrT#Corrective_disaster_risk_management // are direct subtypes of
 undrrT#Compensatory_disaster_risk_management // undrrT#Disaster_risk_management
 (undrrT#Community-based_disaster_risk_management
 \. undrrT#Local-and-indigenous-peoples_disaster_risk_management)
 (undrrT#Mitigation //Since this type name is ambiguous, pm adds a clearer one
 = pm#undrrT#Disaster_mitigation // via this equivalence relation
) __[author: pm] //pm believes that the last subtype relation is true even though
 // it is not in UndrrT (neither explicitly not implicitly)
) //End of relations from undrrT#Disaster_risk_management
 }. //End of the exclusion set and of all relations

11

3.2 A General Model To Represent And Organize Search&Rescue Information

Unlike other general ontologies, the MSO provides a type for “description instru-
ments or results” (alias, “information objects”, e.g. languages, procedures, object-ori-
ented classes) and many subtypes for it, most of which are from KRLO. They are use-
ful for representing and categorising many information objects in disaster manage-
ment. Box 2 shows some types that are useful in the Search & Rescue domain.

Box 2. Subtype hierarchy of MSO types that are useful for categorizing description-related
types in Search & Rescue representations

//For clarity purposes, an informal representation is used below, not a representation in FL:
// an indented list is used for showing subtype relations between types,
//Still for clarity purposes, from now on in boxes and figures, the source prefix of each
// type identifier is left implicit (-> all types come from the MSO).
//Below, in this box, bold characters are used for referring to terms that are listed in Box 3.

Description_instrument-or-result-or-container
 Description_instrument-or-result //Alias Information_object
 Semantic-representation_instrument-or-result //E.g. Principle_of_Coriolis_acceleration
 Semantic-representation_instrument //E.g. Java_semantic, Logic_semantic, Type
 Semantic-representation_result //E.g. Semantic_of_a_KB, Semantic_of_a_program
 Structural_representation_instrument-or-result
 Abstract_representation_instrument-or-result
 Abstract_representation_instrument
 Abstract_process-structure //E.g. While_loop, Petri-Net_structure_element
 Abstract_function //E.g. each method in Box 3
 Abstract_data_type //E.g. Object_oriented_class, Array, Integer
 Abstract_representation //E.g. Path_representation and each term in bold in Box 3
 Abstract_language-or-language_element //E.g. Java_abstract_grammar
 Abstract_representation_result //"Abstract_representation_instrument instance"
 Search_algorithm
 Graph-traversal_and_path-search_algorithm //E.g. the A* algorithm
 Concrete_representation_instrument-or-result
 Concrete_representation_instrument //E.g. Java_concrete_grammar, Character
 Concrete_representation_result //E.g. Java_concrete_function
 Description_container //E.g. File, Software, Web_server, KB_server

A concrete map, e.g. on a screen, is a 2D or 3D graphic representation of physical
objects. An abstract map is a structural representation of a concrete map. In Search &
Rescue, search functions need to exploit characteristics of objects in a map, and search
agents that do terrain mapping or discover victims or possible indices of victims need to
add objects to the map. Thus, structurally, an abstract map should not be a set of pixel
representations but should permit the storage, update and querying of i) object represen-
tations that are, were or may be part of the map, and hence also ii) at least their partOf
relations, types and attributes. This does not mean that such maps should be fully repre-
sented using relations, in a KB. Indeed, this would not only be an inefficient way to
store and handle spatial coordinates or relationships of objects in maps, this would also
make them difficult to exploit via classic programs, those based on classic structures
such as object-oriented classes. Hence, such maps should remain abstract data struc-
tures but should be represented or implemented in much richer structures than “Simple
Vector Graphics (SVG) or 2D/3D arrays” (the kinds of structures used in current abstract
maps). Ideally, for each physical object, such maps would store identifiers or pointers of
the object in a KB, and this KB would support semantic queries on the physical objects.
Box 3 contains a generic representation of all such abstract maps useful for Search

https://en.wikipedia.org/wiki/A*_search_algorithm

12

Box 3. Commented FL representation of object-oriented classes for Search & Rescue

//The types in bold characters (in italics or not) are Abstract_representation types. The types in
// in italics (and not in bold) are information object types that are not Abstract_representation types.
//The other types (except for "Thing") are subtypes of Characteristic_or_dimension_or_measure.
//Variable names are prefixed by "?", as in many other KRLs.
//As in the previous boxes, when comments at the right of some code line are spread on multiple lines,
// each expression in a line is mostly focused on the code of that line.

Abstract_map /̂ Abstract_representation, //Representation of a class for maps
 _{ attribute: 1 Map_scale, //The scale of a map should be associated to it
 1 Temporal-point-or-region_coordinate ?timeStamp, //When the map was valid
 1..3 Spatial-point-or-region_coordinate; //A 2D/3D point/area
 part: 1..* Physical_object_representation_in_an_abstract_map; //Object parts
 //This set can be implemented via a 2D/3D array or an SVG structure
 method: Abstract_map___objects_possibly_at //------ For retrieving objects in (a portion of) a
 (1 Abstract_map, 1..3 Spatial-point-or-region_coordinate, // map (specified here),
 0..* Type ?typeOfAtLeastOneOfTheSearchedPhysicalObjects, // wrt. their types
 0..* Attribute ?attributeOfAtLeastOneOfTheSearchedPhysicalObjects) // or attributes, e.g.
 // health, social value, etc. The next line specifies the types in the returned set
 -> .{1..* Physical_object_representation_in_an_abstract_map}; //-> The retrieved objects
 method: Abstract_map___values_of_objects_possibly_at //------ For knowing the values of objects
 (1 Abstract_map, 1..3 Spatial-point-or-region_coordinate, // in (a portion of) a map
 0..* Type ?typeOfAtLeastOneOfTheSearchedPhysicalObjects, // given the types&attributes
 0..* Attribute ?attributeOfAtLeastOneOfTheSearchedPhysicalObjects, // of searched objects
 1..* Temporal-point-or-region_coordinate ?valuesDuringThisTimePeriod, // at a given time,
 0..* Environmental_context ?environmentalContextOfTheSearch) // wrt. the weather, ...
 -> .{0..* Representation_of_the_value_of_a_physical-object}; //-> The retrieved values
 method: Abstract_map___best_paths_from_somewhere_to_at_least_1_object //------ For knowing the best
 (1 Abstract_map // paths to take (in a map),
 1..3 Spatial-point-or-region_coordinate ?fromPlace, // from a place to
 1..3 Spatial-point-or-region_coordinate ?regionOfSearchedObjects, // another, to find
 0..* Type ?typeOfAtLeastOneOfTheSearchedPhysicalObjects, // objects of given
 0..* Attribute ?attributeOfAtLeastOneOfTheSearchedPhysicalObjects, // attributes, at
 1..* Temporal-point-or-region_coordinate ?valuesDuringThisTimePeriod, // a given time,
 0..* Environmental_context ?environmentalContextOfTheSearch, // wrt. the weather, ...,
 0..* .{Thing, 1..* Type ?typeOfAttributeOfTheThing, // given constraints on the
 0..1 Value ?maxValue, 0..1 Value ?minValue // types+values of the objects
 } ?constraintsDuringTheSearch, // to find, while minimizing
 0..* Type ?typeOfAttributeToMinimizeForBestPaths, // some attributes (e.g. Battery_use)
 0..* Type ?typeOfAttributeToMaximizeForBestPaths, // & maximizing others (e.g. Safety)
 0..1 Abstract_function ?fctToSelectBestPaths, // and/or using a function to do so;
 0..1 Integer ?MaxNumberOfBestPaths, // a maximum number of best paths and
 0..* Search_algorithm ?preferredSearchAlgorithm) // a given algorithm may also be used
 -> 0..* .{1..* Spatial-point-or-region_coordinate}; //-> The computed best paths
 }.

Physical_object_representation_in_an_abstract_map
 _{ attribute: 0..1 Reference_to_a_semantic_representation, //Identifier of (or pointer to) a KB object
 // that represents this physical object
 1 Representation_of_the_location_of_a_physical-object,
 0..* .{ 1 Physical-object_attribute, 0..1 Certitude_of_a_value };
 part: 0..* .{ 1 Physical-object_representation_in_an_abstract_map ?embeddedObject,
 0..1 Certitude_of_a_value };
 part of: 0..* .{ 1 Physical-object_representation_in_an_abstract_map ?embeddingObject,
 0..1 Certitude_of_a_value };
 method: Physical_object_representation_in_an_abstract_map___value
 (1 Physical_object_representation_in_an_abstract_map,
 1..* Temporal-point-or-region_coordinate ?valueDuringThisTimePeriod,
 0..* Environmental_context_of_a_search)
 -> 1 Representation_of_the_value_of_a_searched_physical-object
 }.

Representation_of_the_location_of_a_physical-object
 _{ attribute: 1..3 .{ 1 Spatial-point-or-region_coordinate, 0..1 Certitude_of_a_value } }.

Representation_of_the_value_of_a_physical-object
 _{ attribute: 1 Quantitative-or-qualitative_social_value_of_something, 1 Certitude_of_a_value }.

13

& Rescue, i.e. a list of relations between such maps and some other kinds of objects.
This representation can be viewed as a generalization or “minimal general specifica-
tion” of abstract data structures for such maps. More comprehensively, Box 3 is a top-
level ontology – hence a minimal general specification, model or listing – of functions,
and of the most interesting kinds of objects that they could exploit, which are useful for
Search & Rescue. Three important and combinable functions are represented:

 one to retrieve objects (generally, people, but this is irrelevant for a generic
specification) in (a portion of) a map, given some of their types or ranges for
their attributes, e.g. a range for the expected health or social value of actual or
potential victims at certain places in a map (since, for example, an often used
strategy is to first try to save the healthier and most socially valuable victims),

 one to compute values (possibly with some associated certitude coefficients)
for particular attributes of particular objects in a map, given other parameters
such as the environmental context (weather, ...) and when the rescue begins
and/or when the objects can or could be retrieved (since, for example, some
victims may be difficult to save by the time they are found),

 one to compute the best paths (possibly given strategic rules and/or a search al-
gorithm) from a starting place to others (this may be a whole area to explore)
for finding objects of given attributes, with additional attributes to maximize
(e.g. the safety of the rescuing agents and of the victims) and others to minimize
(e.g. the power consumption of a rover used for exploring a disaster area).

In object-oriented (OO) programming, functions are often associated with some of
the objects they exploit by being represented as methods of the class of these objects.
This kind of association helps organizing and normalizing the code, and is mainstream.
Since this association is worth representing and since the content of Box 3 is intended to
be a minimal general specification of important primitive functions for Search & Res-
cue, FL has recently been extended to allow the use of the syntax used in Box 3. This
syntax is not only close to those of frame-based or graph-based KRLs, including Turtle
and JSON-LD, but also close to UML notations and OO-like notations. The use of “_{”
and “}” as delimiters permits the use of this syntax which slightly departs from the usual
one in FL (but FL often uses “.” and “_” as prefixes for specifying particular meanings,
e.g. “.{” and “}” are the default delimiters for collections in FL). However, the repre-
sented KRs are not just OO classes, if only because genuine relations are used, not at-
tributes of classes that are local to them. Here are two advantages of associating func-
tions to information structures via a relation of type “method”:

 This allows the use of an intuitive and compact OO-like naming scheme for
functions: see the “__” within the names where OO programming languages
would allow the use of “.” for compactness and modularity reasons.

 Combined with the use of UML cardinalities (e.g. “1..3”, “0..*”) in the pa-
rameters of these functions or methods, such a graph-based specification
clearly generalizes – or abstracts away – implementation particularities. In-
deed, with programming languages, the structures (or classes in OO lan-
guages) are tree structures, and the functions do not use cardinalities nor
have successive default parameters; this generally forces the users of these
languages to i) cut the semantic graph into pieces when representing it via

14

such structures, ii) make the relations implicit, iii) choose a rather arbitrary
embedding order between the graph elements, and iv) implement various
similar versions of a same function, based on particular aggregations of
datatypes for the parameters.

3.3 Representations About Automatic Explorations of A Disaster Area

This subsection shows how the task of systematically exploring a disaster area (e.g.,
by a rover, to search for victims) can be represented at a high-level: the reuse of the
functions from the previous subsection is not shown. The focus is to show how tasks
or procedures can be represented via KRs, at a high-level.

Box 4 shows an example systematic search procedure written in a procedural lan-
guage. Such procedures can most often be automatically converted into pure functions,
hence in a declarative way. Such functions can be directly represented in a KRL that
handles functions (e.g. KIF and FL) and hence included in a KB. There, functions can
be organized via generalization relations and also generalized by more classic KRs, e.g.
logical formulas representing rules. Box 4 is just an example procedure. Fig. 2 (next
page) shows some relations (a partOf one and several subtype ones) between top-level
tasks in Search & Rescue. Such relations are useful for categorization purposes, e.g. to
organize and exploit a library of functions useful for Search & Rescue. Such a library
may for example organize functions which represent different ways of performing simi-
lar tasks. The library – and hence programs reusing it – may also include a function that
selects the most relevant of these different ways for a particular environmental context
given as a parameter. Box 5 shows some further subtype relations from one of the tasks
mentioned in Fig. 2 and, to do so, uses FL.

Box 4. Commented procedure for a systematic search by a rover, one based on an infinite loop
in which the rover simply decides to go ahead or not

while (true) //Infinite loop. Below, "()" indicates a function call (the parameters are not specified)
{ if (further_exploring_is_not_useful()) //To decide that, the methods of Section 3.2 are used
 { come_back_to_base(); break; } //"break": the loop is broken when the rover has returned
 else if (going-ahead-and-then-come-back-to-base_is_not_possible()) //Via the methods of Section 3.2
 come_back_to_alternative_route (); //E.g., given battery levels, obstacles, mechanical problems
 else go_ahead();
}
// Two example cases for a rover exploring underground spaces and fails, under debris and ruins:
// * The rover cannot continue on a particular path (e.g. because it would risk getting stuck):
// it returns in the opposite direction to a point where it can continue its exploration,
// an intersection with a not yet explored path.
// * The rover has explored the last path (-> "normal" end of mission) or
// cannot continue exploring (e.g. because it has not enough energy): it returns to its base.

Box 5. FL categorization of the “Safe_path_backtracking” process or task mentioned in Fig. 2

Selecting_a_path /̂ Process, //reminder: here, only type names are used (not type identifiers)
 part of: 0..* (Search_and_rescue /̂ Process),
 \. (Selecting_a_safe_path \. (Selecting_a_safe_and_recently_explored_path \. Safe_path_backtracking)),
 \. partition
 { Path_selection_when_going_ahead_is_possible_and_useful
 (Path_selection_when_going_ahead_is_not_possible_or_not_useful \. Safe_path_backtracking)
 }.

15

 Process

 {disjoint, not complete}

 Search_and_rescue part 0..* Selecting_a_path

 {disjoint, complete}
 Selecting_a_safe_path

Path_selection_when_going_ahead_is_possible_and_useful

Path_selection_when_going_ahead_is_not_possible_or_not_useful

 Selecting_a_safe_and_recently_explored_path

 Safe_path_backtracking
Legend: as in Fig. 1.

Fig. 2. UML-like representation of some relations between tasks involved in Search & Rescue

4 Conclusion

The first kinds of contributions of this article were i) its highlighting of the insuffi-
ciencies of restricted KS – hence, the waste of efforts and opportunities that not using
general KS is for supporting general tasks such as disaster management – and ii) its
panorama of complementary techniques supporting general KS. Since this field is still
seldom researched, for the techniques to be complementary, this panorama draws on
techniques previously developed by the first author. Although some new research ele-
ments have been included, the originality of this panorama is mainly in the synthesis it
makes since the presented techniques together provide a rather complete approach for
supporting general KS efforts useful for disaster management, while still allowing the
reuse of advances in the well researched field of restricted KS. Together, these tech-
niques answer the following research question: how to let Web users collaboratively
build KBs i) that are not implicitly “partially redundant or inconsistent” internally or
with each other, ii) that are complete with respect to certain criteria or subjects,
iii) without restricting what the users can enter nor forcing them to agree on terminol-
ogy or beliefs, and iv) without requiring people to duplicate knowledge in various
KBs, or to manually search knowledge in various KBs and aggregate knowledge from
various KBs?

The second kinds of contributions of this article were i) KRs showing how comple-
mentary kinds of disaster management related information can be represented for gen-
eral KS purposes, and ii) highlights of the interest of creating or reusing such KRs.
The focused example domains were i) the UNDRR terminology, ii) a general model
to represent and organize Search & Rescue information, and iii) procedures or tasks
for automatically exploring a disaster area.

The authors of this article will continue to add KRs to the MSO of the WebKB-2
server for supporting disaster management. WebKB-2 will continue to be improved to
ease its use for general KS in disaster management.

16

References

1. Dodds, L., Davis, I.: Linked Data Patterns – A pattern catalogue for modelling, publishing,
and consuming Linked Data. Web doc. (56p): http://patterns.dataincubator.org/book (2012).

2. Dobrinkova, N., Kostaridis, A., Olunczek, A., Heckel, M., Vergeti, D., Tsekeridou, S.,
Seynaeve, G., De Gaetano ,A. Finnie, T., Efstathiou, N., Psaroudakis, C.: Disaster Reduc-
tion Potential of IMPRESS Platform Tools. In: revised selected papers of ITDRR 2016,
pp. 225-239, Springer, Cham. (2016).

3. Gaur, M., Shekarpour, S., Gyrard, A., Sheth, A.: empathi: An ontology for emergency
managing and planning about hazard crisis. In: 2019 IEEE 13th International Conference
on Semantic Computing (ICSC), pp. 396-403 (2019).

4. Kontopoulos, E., Mitzias, P., Mossgraber, J., Hertweck, P., van der Schaaf, H., Hilbring,
D., Lombardo, F., Norbiato, D., Ferri, M., Karakostas, A., Vrochidis, S., Kompatsiaris, I. :
Ontology-based Representation of Crisis Management Procedures for Climate Events. In:
ICMT 2018 (Workshop on Intelligent Crisis Management Technologies for Climate
Events), at ISCRAM 2018, Rochester NY, USA (2018).

5. Malizia, A., Astorga-Paliza, F., Onorati, T., Díaz, P., Aedo Cuevas, I.: Emergency Alerts
for all: an ontology based approach to improve accessibility in emergency alerting sys -
tems. In: ISCRAM 2008, pp. 197-207, Washington DC, USA (2008).

6. Martin, Ph.: Knowledge representation in CGLF, CGIF, KIF, Frame-CG and Formalized-
English. In: ICCS 2002, 10th International Conference on Conceptual Structures, LNAI
2393, pp. 77-91 (2002).

7. Martin, Ph.: The Multi-Source Ontology (MSO) of WebKB-2. Web document: http://
www.webkb.org/doc/MSO.html (2004).

8. Martin, Ph.: Towards a collaboratively-built knowledge base of&for scalable knowledge
sharing and retrieval. HDR thesis (240 pages; "Habilitation to Direct Research"), Univer-
sity of La Réunion, France, http://www.webkb.org/doc/papers/hdr/ (2009).

9. Martin, Ph.: Collaborative knowledge sharing and editing. International Journal on Com-
puter Science and Information Systems (IJCSIS), 6(1), 14-29 (2011).

10. Martin, Ph., Bénard, J.: Creating and Using various Knowledge Representation Models
and Notations. In: ECKM 2017, pp. 624-631, Barcelona, Spain (2017).

11. Martin, Ph.: Representation and organization of the UNDRR terminology. Web document:
http://www.webkb.org/kb/nit/o_risk/UNDRR/d_UNDRR.fl.html (2020).

12. OMG (Object Management Group): OMG Unified Modeling Language Superstructure
Specification, version 2.1.1. Document formal/2007-02-05, Object Management Group,
http://www.omg.org/cgi-bin/doc?formal/2007-02-05 (2007).

13. Munkvold, E.B., Opach, T., Pilemalm, S., Radianti, J., Rod, J.K.: Sharing Information for
Common Situational Understanding in Emergency response. In: European Conference of
Information Systems (ECIS), Uppsala, Sweden (2019).

14. Snaprud, M., Radianti, J., Svindseth, D.: Better access to terminology for crisis communi-
cations. In: revised selected papers of ITDRR 2016, pp. 93-103, Springer (2016).

15. Tanzi, T.J., Bertolini, M.: 3D Simulation to Validate Autonomous Systems Intervention in
Disaster Management Environment. In: revised selected papers of ITDRR 2019, pp. 196-
211 (16 pages), Springer, Cham. (2019).

16. UNDRR (United Nations Office for Disaster Risk Reduction): Report of the open-ended inter-
governmental expert working group on indicators and terminology relating to disaster risk re-
duction. Web document: https://www.preventionweb.net/publications/view/51748 (2020).

17. W3C (World Wide Web Consortium): Semantic Web. Web document: https://
www.w3.org/standards/semanticweb/ (2020).

https://www.preventionweb.net/publications/view/51748
https://www.preventionweb.net/publications/view/51748
https://www.researchgate.net/profile/Nina_Dobrinkova/publication/321139058_Disaster_Reduction_Potential_of_IMPRESS_Platform_Tools/links/5b21327c458515270fc6ba21/Disaster-Reduction-Potential-of-IMPRESS-Platform-Tools.pdf
https://www.researchgate.net/profile/Nina_Dobrinkova/publication/321139058_Disaster_Reduction_Potential_of_IMPRESS_Platform_Tools/links/5b21327c458515270fc6ba21/Disaster-Reduction-Potential-of-IMPRESS-Platform-Tools.pdf
https://www.w3.org/standards/semanticweb/
https://www.w3.org/standards/semanticweb/
doc/Tullio_ITDRR19_ASsimul17p.pdf
doc/Tullio_ITDRR19_ASsimul17p.pdf
https://www.researchgate.net/profile/Sofie_Pilemalm/publication/333824778_SHARING_INFORMATION_FOR_COMMON_SITUATIONAL_UNDERSTANDING_IN_EMERGENCY_RESPONSE/links/5d0793d792851cfcc61d2b1d/SHARING-INFORMATION-FOR-COMMON-SITUATIONAL-UNDERSTANDING-IN-EMERGENCY-RESPONSE.pdf
https://www.researchgate.net/profile/Sofie_Pilemalm/publication/333824778_SHARING_INFORMATION_FOR_COMMON_SITUATIONAL_UNDERSTANDING_IN_EMERGENCY_RESPONSE/links/5d0793d792851cfcc61d2b1d/SHARING-INFORMATION-FOR-COMMON-SITUATIONAL-UNDERSTANDING-IN-EMERGENCY-RESPONSE.pdf
http://www.omg.org/cgi-bin/doc?formal/2007-02-05
http://www.omg.org/cgi-bin/doc?formal/2007-02-05
http://www.webkb.org/doc/papers/eckm17/
http://www.webkb.org/doc/papers/eckm17/
http://www.iadisportal.org/ijcsis/vol6_numb1.html
http://www.iadisportal.org/ijcsis/
http://www.iadisportal.org/ijcsis/
http://www.webkb.org/doc/papers/hdr/
http://en.wikipedia.org/wiki/Habilitation
http://www.webkb.org/doc/papers/hdr/
http://www.webkb.org/doc/papers/iccs02/
http://www.webkb.org/doc/papers/iccs02/
https://e-archivo.uc3m.es/bitstream/handle/10016/7804/emergency_ISCRAM_2008.pdf
https://e-archivo.uc3m.es/bitstream/handle/10016/7804/emergency_ISCRAM_2008.pdf
https://e-archivo.uc3m.es/bitstream/handle/10016/7804/emergency_ISCRAM_2008.pdf
https://www.researchgate.net/publication/323942775_Ontology-based_Representation_of_Crisis_Management_Procedures_for_Climate_Events
https://www.researchgate.net/publication/323942775_Ontology-based_Representation_of_Crisis_Management_Procedures_for_Climate_Events
https://www.researchgate.net/publication/323942775_Ontology-based_Representation_of_Crisis_Management_Procedures_for_Climate_Events
https://arxiv.org/pdf/1810.12510
https://arxiv.org/pdf/1810.12510
https://www.researchgate.net/profile/Nina_Dobrinkova/publication/321139058_Disaster_Reduction_Potential_of_IMPRESS_Platform_Tools/links/5b21327c458515270fc6ba21/Disaster-Reduction-Potential-of-IMPRESS-Platform-Tools.pdf
http://patterns.dataincubator.org/book/

	1 Introduction
	2 Complementary Ways to Support General Knowledge Sharing
	2.1 Tools To Import & Export Any Kind Of Knowledge, Even In User Specified Formal Languages
	2.2 General-purpose Ontologies Merging Top-level Ontologies and Lexical Ones
	2.3 KB Servers That Support Non-restricting KB Sharing By Web Users
	2.4 KB Servers That Support Networked KBs

	3 Examples Of Representations For General Knowledge Sharing
	3.1 Organization of a Small Terminology About Disaster Risk Reduction
	3.2 A General Model To Represent And Organize Search&Rescue Information
	3.3 Representations About Automatic Explorations of A Disaster Area

	4 Conclusion
	References

