Knowledge Acquisition using Documents, Conceptual Graphs
and a Semantically Structured Dictionary

Philippe MARTIN

INRIA - ACACIA project
2004, route des Lucioles - BP 93
06902 Sophia Antipolis Cedex France
Phone: (33) 93.65.76.45 Fax: (33) 93.65.77.83
E-mail:phmartin@sophia.inria.fr

Abstract

In this paper we first show how in CGKR our knowledge acquisition tool, any
document element and its semantics may be represented using the Conceptual Graphs
formalism (Sowa, 1984) and a structured document edituen, we study the kinds of
hypertext links that may be set between documents elements and concepts or relations of
the knowledge base (such links enables the use of search techniques on the KB for finding
information within the documents). In a second part, we detail the top-level ontologies
(for concepts and relations) proposed by CGKahd its exploitation of a semantically
structured dictionary for guiding knowledge representation and easing its later reuse.

1 INTRODUCTION

In the Knowledge Acquisition process, electronic documents may be used at all stages of
knowledge acquisitionsome may be expertise sources (e.g. interview transcriptions and
technical reports)pthers may be generated during the Knowledge Based System (KBS)
design phase (e.g. documents of specifications, technical documentation and documents given
by the KBS for lengthy explanations on its knowledge or on its reasoning).

Information scattered within the documents may detaifeddht aspects of the same
knowledge or may detail this knowledge atfeliént levels. Knowledge Acquisitionodls
(KATS) may help the knowledge engineer to retrieve information in electronic documents,
using the logical structures of the documents, data analysis techniques, or natural language
processing techniques. KA may also enable the knowledge engineer to set hypertext links
between document elements and entities of the knowledge base (KB), as for instance in
Shelley (Anjewierden and \&emakey 1992) and in the K-Station (Albert andgél, 1990).

Then, the origins of the knowledge of the KB may be retrieved, which is useful for the KB
validation and for generating technical documentation. Hypertext links may also be set
between the KB and the generated documents, as in Bla¢Wanard and Nanard, 1993).
With the help of these hypertext links between the KB and the documents, the knowledge
engineer couldalso use search techniques on the KB.g. browsers, question-answering
systems)o find information within the documentsWe have implemented this idea in our
KAT called CGKA.

CGKAT enables its users to represent any document element e.g. a word, a sentence, an
image, a paragraph, a chapter and a whole document. Such a function implies 1) a structured

document editor which enables the construction or the selection of document element and the
navigation between them; 2) a knowledge representation language which can represent any
document element as an entity and the semantic of that entity at the needed level of detail.
CGKAT uses the structured document editor Grif (Quint and Vatton, 1992) and the
Conceptual Graphs formalism (Sowa, 1984). This formalism has a direct mapping to natural
language and enables to represent any word and any statement (e.g. a sentence, an image, a
chapter, a document) by a concept. Thus, semantic relations between document elements may
be represented by conceptual relations between concepts. The knowledge modelling methods
of current KATs usually do not enable to represent a document element as an entity, and
enable to represent only some predefined aspects of information in document elements; then
1) semantic relations between elements cannot be represented; 2) elements can only serve as
hypertext anchors for the KB entities. Our tool enables both representation of document
elements and of their relations, and the use of document elements as anchors for KB entities.
When a document element is represented by a concept, it becomes an hypertext anchor for
this concept but some semantic constraints must be verified by the concept, and there is a
semantic link between the concept and the document element. Such semantic links may then
be used e.g. for documentation generation. The semantic link is not explicit when a simple
anchoring is used. In the first part of this paper, we will examine the respective interest of
these two kinds of association for the extraction and the representation of document
knowledge, and a method we propose to conciliate them.

Automatic document knowledge extraction provides an help to the knowledge engineer.
However g'he still has a lot of work to do for building the KB: s/he has to filter, to interpret
and to represent document information according to various goals, common sense knowledge
and knowledge acquisition models. At the present time, our tool does not include any
automatic knowledge extraction module but helps to search information in texts and to
represent this information. CGKAT proposes to the user a top-level ontology which includes
the important high level concept types useful in natural language and knowledge acquisition.
The tool exploits the semantically structured dictionnary WordNet (Miller et al., 1990) for
proposing concept types (with their known supertypes and subtypes) corresponding to the
various known meanings of alexical entry given by the user. This eases the representation of
the documents words and expressions, accel erates and guides the lattice construction, and also
facilitates its reuse for other applications.

In the next section, we show the architecture of CGKAT, then the ways the user may build the
KB and keep adequate links with documents.

The third section shows functions for exploring, building and using the concept type lattice
and the relation type hierarchy. We will discuss their initial content proposed by the tool to the
users, and the exploitation of WordNet done by the tool to guide the concept type lattice
extension.

Finally, we will compare our work with related ones.

2 BUILDING A KB OF CONCEPTUAL GRAPHSUSING DOCUMENTS

After the presentation of the tool architecture, we will see how a document element may be
represented in CGKAT and what kinds of link may be set between the document element and
the KB entities, and how it helps knowledge modelling.

2.1 Thetool architecture

Programming our tool from scratch would have been a tremendious e have been able

to reuse or exploit three packages: 1) Cas(Tarbonneill and Haemmerlé, 1993), a "CG
platform for Question/Answer and DataBase capabilities” developed at the LIRR)NGrif

(Quint and \atton, 1992), a structured document editor developed at the ﬁ,\IB)A(\brdNet
(Miller et al., 1990), a public domain on-line lexical reference system developed at Princeton
University,

CoGIlTo is a set of functions for creation, modification, saving and loading a concept type
lattice, a relation type hierarchy and CGs (e.g. facts, definitions, schemas and prototypes). The
LIRMM team currently implements other packages based on GotBEE are complementary

to the ones of CGKA including a question-answering system using query relaxation
techniques (Carbonneill and Haemmerlé, 1994) and a cooperative program for the
construction of a concept type lattice (Chein and Leclere, 1993). Searches within thd CGKA
KB is done with: 1) the LIRMM question-answering system; 2) a browser we presently
develop; 3) the menus for handling the concept type lasinckthe relation type hierarchy
which are presented in section 3. Hence, in $kistionwe will not detail searches techniques

in the KB but their complements for document exploitation, which are links between
knowledge and the source or generated documents.

Grif enables to edit a document structured in various elements (e.qg. title, chagtien, note,
paragraphgroup of words, figure). The possible orders and presentation of these elements are
formally specified in Documentype Definitions (DTDs) and presentation models. Then, the
manipulation of these elements (e.g. selection, creation, attribute adding, hypertext
connection and presentation change) may be done by the user via theoetygerograms via

a C functional interface called the "Grif Editingdl Kit". CGKAT exploits this editor and this
functional interface in order to fefr a graphic interface for the CGs creations, displays and
updates: the graphic representation of concepts and relations are typed document elements.
Given the DTDs and the presentation models, these graphic representation take little space on
disk and may be updated easNMoreover hypertext links may be set between them and other
document elements (of course, graphic representations always reflect the KB knowledge).

WordNet is an on-line system that exploits a dictionary whose design is inspired by the
current psycholinguistic theories of human lexical mem&gme 54,000 word forms of
English nouns, verbs, and adjectives arganized into 49,000 synonym sets, each repre-
senting one underlying concept (a concept type in the CGs formalism). The synonym sets ar
linked either by lexical relations between word forms (e.g. synonymy and antonymy), either
by semantic relations between word meanings (e.g. Is-a, Part-of, Cause-of, Attribute and
Frame). Thus, a lot of knowledge may be found iordet for building a KB for any appli-
cation. At the present time, our tool only exploits the Is-a relation. For guiding knowledge
acquisition and representation, it structures tloedMet high level concept types.

We have built our tool with a client-server architecture. The server is composed by access and
manipulation functions on knowledge in the KB andrdNet. The client has methods for
document editing and manipulation, and for menu handling. These two parts may either be

1. Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier - France.

2. Institut National de Recherche en Informatique et Automatique - France.

compiled together or operate as communicating processes. The following figure shows the
architecture. Our contribution is shaded.

Conceptual Graphs Knowledge base WordNet: a semantically
(C++ functional interface: CoGITo) structured dictionary

/

| K nowledge base access and update |

A

Y

Edition of documents and Conceptual Graphs; Grif structured document editor
Menus handling (C fonctional interface: Grif Editing Tool Kit)

Figure 1: Our tool architecture (the greyed parts represent our devcel opments).

2.2 Representation of document element and anchoring of KB entities

Once a document element is selected, it may be represented by a concept or associated to
CGs. In order to represent a document element, a knowledge engineer must use a concept and
not a CG. Thus, s’lhe may represent semantic relations between document elements by
conceptual relations between concepts. Let us now see which kind of concept to use.
According to Sowa (1992), in the Conceptual Graphs formalism, a sentence refering to a
situation may be represented using concepts of type Situation® and Proposition, as shown in
the following extract.
The next graph describes a situation of a cat on amat:
[Situation]->(Dscr)->[Proposition]->(Stmt)->[Graph: [Cat]->(On)->[Mat]].

... The following graph represents the sentence There exists a situation described by a proposition stated
by a sentence represented by the string "A cat ison a mat" :

[Situation]->(Dscr)->[Proposition]->(Stmt)->[Sentence]->(Repr)->[String: "A cat ison a mat"].
There are three possible contractions for simplifying this graph to just a single concept:
[Situation]->(Dscr)->[Proposition]->(Stmt)->[Sentence: "A cat ison amat"].

[Situation]->(Dscr)->[Proposition: "A cat is on amat"].
[Situation: "A cat ison amat"].

We think that any document element which is not a word or a compound word, is a statement
of a proposition describing a situation (i.e. a real or imaginary state or process). Such an
element may be for instance a group of words, a sentence, a section, an image or a graph.
Words might also refer to propositions describing situations but most single words refer to
abstract or concrete entities or properties. Since the types of document elements e.g Image,
Section or Chapter, are already accessible and handled in the logical structure of a structured
document, it would have been a useless complication to represent them in the KB. Hence we
decided to represent document elements refering to a situation by concepts of type Propo-
sition? and single words by concepts of relevant types (e.g. subtypes of Entity or Property). A
document element refering to a situation could not be directly represented by a concept of
type Situation, since for example it would be a non-sense to relate such concepts by

1. All states and process are situations and they may be represented by concepts, the types of which are subtypes
of State and Process (State and Process are subtypes of Situation).

conceptual relations representing rhetorical relations between document elements e.g.
Summary Elaboration, Restatement, Antithesis and Circumstance. These relation names
come from the "Rhetorical Structure Theory" (Mann & Thompson, 1987). Rhetorical
relations may be used for hypertext navigation, explanation generation or for studying dialogs
between experts.

The knowledge engineer may use arbitrary complex CGs in the referent part of concepts of
type Proposition in order to express its interpretation of the content of the document element,
at the level of detail s/he needs. When a concept is created for representing a document element,
a bidirectional hypertext link is automatically set between the element and the concepit.

CGKAT also enables its users to do simple anchoring, that is, to associate with hypertext
links, CGs to any document element, or many elements to a CG (a CG may be reduced to a
single concept). WWh that, there is no explicit semantic relation between the CGs and the
anchored elements. The user may use simple anchoring to dispatch some information of an
element in various CGs which may correspond to various models (e.g. a task model) or
modules. V& will see in the next section how the user may easily include a same CG or
concept in various CGs (or models/modules since they may be represented by CGs).

The user may also set hypertext links between a conceptual relation in a CG and the smallest
document elements which led him to set that relation. Thus, even if s/he does simple
anchoring, s/he may store the precise origins of the knowledge s/he represents. Additionally
from a semantic point of viewur tool looks on a document element which is an anchor for a

relation, asif it was represented by a concept of type Proposition with, in its referent part, the

graph composed by the relation and the concepts it links. This is useful for the generation of
document to answer a request on the KB. Thus, the user may only use simple anchoring if s/he
does not need representations of document elements (e.g. to represent relations between them).

The user may also add a CG to the KB without link to any document for example to express
some common-sense knowledge. Such a CG, as any CG, may include a concept representing a
document element and then may represent semantic relations between elements.

We now detail with two examples how all these links may be set in our tool. We will see
in section 3 how the user may choose a type for a concept or arelation.

Figure 2 is a Grif editor window showing an excerpt of a transcription of an expert interview
(the expertise domain is car accident analysis/diagnosis @etral., 1993)). Colored
guotes highlight the elements represented by a concept and the elements to GBittas
been associated (single words are not quoted but colored).

Figure 3 is anothe®rif editor window showing a concept representing the selected document
element with very few details. As it is shown, the creation date of a concept and the identifier
of its author are automatically registered with each concept. Thus, searches in the KB could be
done with some constraints on such information. The source document is not explicitly shown
in Figure 3 since every concept which represents a document element is linked to this element
by an hypertext link, but this information is also saved in the KB to enable constraints on

2. All types cited here are included in the initial lattice proposed by CGKAT but the type Proposition is the only
concept type prescribed by our tool. Actually in our tool this is the only type which may have a CG as a referent.
(this is the only "complex” type; Situation is not a complex type). Following Sowa, Proposition is a subtype of
Abstract_Entity. Of course, all types may be specialized by the CGKAT users.

source documents during searches. Every user may use a concept for representing a document
element and from an element the various concept which represent it may be reached by
hypertext navigation: a window like the one in Figure 3 appears. (In the concept shown in this
figure, the CG in its referent part only includes concepts with implicit existential referents).

The tool does not allow the user to add in a CG which is in the referent part of a concept repre-
senting a document element 'x’, of a concept representing a document element which is not
included in ’x’ (for it is not in the representation of an element that must be represented its

semantic relations with other not included elements).

Docurnent Edit “iews Search Presertation Aftributes Selection Tools

Selection [Repres Mark Repres Mark] ' Simple_paragraphh, Section ', Article

Knuwledge Engineer (KE) : what about the collecting phase ?

&«

JEAN-LOUIS : Well, the first thing I do when [arrive on the accident area isto zet a
general view on the accident, its causes, its severity. Then [take the mazimom of notes and
photos on everything that will guicly disappear. I note the final position of thevehicles, the
locations of the debris, the trails, the loading of vehicle, its gear |ever, the condition of the
tires, and if pessible the lighting condition and the electric circnit.

KE : Do you have a check-list #

JEAN-LOUIS : Yes, [have a check-list to Bl in but [use it mainly inalater observation
phasze. In the first abseration phase, I note the important infermation that will be lost af-
terwards. MWhen I think that a later collecting phase will not be possible, T do a quick
technical collecting phase on the vehicle.a That is to say, I leok for defanlts in the suspen-

sion, the brakes, the tires, the steering column.
X

KE : Do you vse instruments ?

Figure 2: An expert interview transcription edited with Grif

e ElemReprConcepiss

Documert Edit Wiews Search Presentstion Attributes Selection Tools

Selection TEXTE %\ ConceptType '\ Concept \ CGgraph\ aCG

The following concepts represent the same document element
{double click on a concept to see the element it may represent, or the concept it may refer to)
(apply "Search -= Reference 1o..." on & concept 1o see the modules or CrEs that include it

Cinthe 2000924, the following concept was created by the user "phmartin®

Froposition :

|Technical_collecting_phase |

Subtask Subtask
Ay

Test_possibility_later_collecting_phase |—Wl Long_technical_collecting_phase

Suce [Bubtask
k.

Quic:k_tec:hnical_cnlleming_phase]l

Figure 3: A representation of the selected document element of Figure 2.

e ElemAssociatedC Gss

Document Edit iews Search Presentstion Attributes Selection Tools

Selection TEXTE \ RelationType |, Relstion | CGgraph \ GraphByUser

The following CGs are associsted to the same document element
{double click on & concept to see the element it may represent, or the concept it may refer to)
{apphy "Search -» Feference to..." on a concept to see the modules or CGs that include i)
{apphy "Search -= Reference to..." on a GG to see the modules or CS5s that include i)

On the 26/09/94, the foliowing CG was created by the user “phmartin®

Road_accident_anafysis_tasks

First_callecting_phase &

Bubtask

Take_s_genersl_view_on_the_accident Mete_or_phaotograph_impartant_transcient_information

Succ

" Technical_collecting_phase

Subtask Subtask
Test_possitilty_later_callecting_phase |—m)| Long_technical_collecting_phase
Succ Sl.lbtaski

|Quick_technical_collecting_phase|

Figure 4: CG associated to the non selected element of Figure 2.

In order to speed CG building and hypertext navigation between CGs, the user may very
easily add "living copies' of already existing conceptsto a CG (aliving copy is a copy linked
by hypertext link to the original and which is modified when the original is updated; aliving
copy may be deleted but not modified).

Figure 4 shows a CG that is associated to the non selected element of Figure 2. Each user may
associate several CGs to a same element. S/lhe may include this CG in various modules (or
CGs) by the method of the "living copies’ (in Figures 3 and 4, the way to access the modules
or CGs which do the inclusion, is explained). Thus, the CG in Figure 4 (whose links are of
types "Subtask" or "Succ") could be included in a task decomposition tree collecting all the
tasks necessary for an application. Hence, the user may focus on a document element and
represent different kinds of information it includes, in different CGs, and this way s/he can
instantiate various knowledge acquisition models e.g. those of KADS (Wielinga & al, 1992).
(Figures 2 and 3 are simple examples; any relation type may be used between concepts, not
only Subtask and Succ).

Although information from many documents may then be represented and synthesized in various
CGs, the precise origins of this knowledge may be kept: with hypertext links the user may
associate to any conceptual relation the smallest document element that |eaded to set that relation.

This section showed how the user may build the KB gradually and in a modular way, keeping
the exact needed links with the source documents. Two approaches were detailed (Figures 3
and 4). Procedures of translation between the results of these two approaches will be imple-
mented. During document generation, the same kinds of hypertext links could be set. We are
now going to see how the user may choose or structure the concept and relation types
necessary for buiding the KB.

3 HANDLING AND CONTENT OF THE CONCEPT TYPE LATTICE AND
THE RELATION TYPE HIERARCHY

We first show how the user may navigate and handle the concept type lattice, and how our tool
exploits WordNet, then we will discuss about the high level structuration of thislattice. Then,
we will see apossible structuration for the relation type hierarchy.

3.1 Concept typesretrieval and handling

Figure 5 shows with a hierarchically indented list, some! subtypes of "Concept", our
supertype for al types. By successive selections of concept types, the user may navigate2 in
the lattice (see Figure 6). When the user selects atype, s/he may apply some commands® on
it. The relation type hierarchy is shown in the same way (see Figure 7). In afuture version of
the tool, other kinds of lattice or hierarchy will be displayed and handled in the same way: the
type of the relations between the handled objects will not be only "Subtype", but could be
"Instance”, "Subtype& Instance”, " Subtype& Entailment”, "Succ", "Part”, etc. (the hierarchy
might have only one level).

3.1.1 Searches of concept types with WordNet

The user may search a concept type by navigation or giving a part of its name. In this last
case, the search is done either in the current lattice, or in the WordNet dictionary. We now
detail this exploitation of WordNet.

Given a lexical entry e.g. a document word, WordNet extracts its root (the word form) and
gives back the word meanings, that is a list of synonym sets (or synsets). Supertypes and
subtypes of each synset are also given®. We have noticed that for each meaning, it was

1. The depth is controlled by the Max depth" number entry widget and the presence of the keyword "e.g." in the
comments. The types which have many direct supertypes are preceded by a’%’ and the types which only have
"Absurd" as subtype are preceded by ’.’. In the future, the "Graphic" button will enable to view the lattice with
agraph form.

2. Figure 6 shows the (nine first) supertypes and subtypes of a selected type. When a type has many direct super-
types, each one of them is preceded by a’# and each branch is completely developed (e.g. the supertypes of
Physical_Entity).

3. Subtype and supertype adding, deletion, subtypes deletion (thelist of the GCswhich usethesetypeswill begiven
before the deletion), etc. An "alias’ command will soon be implemented and will enable each user to see types
under other names; hence the CGs display will be adapted.

4. Theresults of WordNet are analysed with a simple parser.

possible to build a distinct name with the concatenation of the names in the synset, hence a
distinct concept type name (sometimes the tool also has to concat the first direct supertype
name in order to make the concept type name distinct from anyother one). Let us take an
example: for any of the lexical entries in the synset {life forrgaarsm, being, living thing},
WordNet gives back this synset, and the tool builds the following concept type name from it:
W_life_form__oganism__being__living_thing. This concept type appears in Figure 6 with a
comment part that also comes fronoMiNet. W& have placed it under Physical_Entity (in
WordNet, this synset has many subtypes but no supertype).

In this article, we did not alias the concept types coming framdWet (see Figure 5). Figure

6 shows the only concept type (and its supertypes) found by the command "Search for the
following concept (type)" for the lexical entry "auto”. Its subtypes, accordingotaMét, are

also shown since the user selected it. Whemdhet gives several synsets for a lexical entry
each corresponding concept type is shown with its supertypes. Concept types retrieved with
WordNet are only propositions: until they are accepted by the thegrare preceded by a '~’

and they are removed from the lattice as soon as they are not displayed. They are placed under
"Concept" if none of their supertypes is already in the lattice. Thus, the concept types
retrieved in VBrdNet are always subtypes of concept types of the lattice. Hence, in this lattice
the accepted WrdNet concept types may be structured and thgarasation may be ddrent

from the oganization of VBrdNet synsets, without any badezft on the tool exploitation of
WordNet. © sum up, the 49,000 concept types of this semantically structurechdigtiare
"virtually" included in the lattice: they are not actually included but the users malyesaeas

if they were included, and if s/he needs some for its application, s/he can include them

The integration and the use ofovdNet knowledge will be further discussed in the next
subsection but let us note now that the user will always have to correct or complement some
discrepancies in this knowledge. For example, a very little numbeocdN¢t concept types

are actually individuals (in the CG formalism sense) e.g. W_Johann_Sebastiad. Baeh

users should not include these individuals in the concept type lattice. When the relation
"Instance"” will be exploited by the "Concept (type) hierarchy handling” menu, the user will
easily integrate such knowledge in the KB. The other relations whgane the WrdNet
synsets will be exploited in the same way

Another problem is: does the inclusion of concept types proposecdlyN&t may change a
lattice into a structure which is not a lattice ? Although tleedMet ontology is mainly a tree,

the answer may be positive. Hence, a verification procedure should be run after each
inclusion, or only upon the userrequest since the duration of this check is proportional to
the cube of the number of types in the lattice. If therdMet ontology was not virtually
included, each checking would take a very long time. Such checks and other helps to build the
lattice will be introduced in CGKRwhen it will be connected to the "cooperative program

for the construction of a concept type lattice" of Chein & Leclére (1993).

1. The user may alias them but not rename then otherwise the link with WordNet would be lost and no subtype
could be searched any more for these type.

2. More exactly, the authors of WordNet did not distinguish the Subtype relation and the Instance relation that may
exist between word meanings; they used an "Hyponym" relation, which definition is: "a concept represented by
the synonyms set {x, X, ...} is said to be a hyponym of the concept represented by the synonyms set {y, y’, ...}
if native speakers of English accept sentences constructed from such framessa (kind of) y".

Concept (brpe) hierarchy handling

Commands on the follmﬁxing hierarchny Chosen relstion(s) M=o depth
Change the relation on which the hierarchy is based | suptype 1.20
Undo earlier commands 5
Search for the following concept (type) Concept (type)

Cormrmands using the selected concept (type)

Represent an element or update a concept with the selected concept (type)

Type_of_Type -- third order concept, e.g. Rank, Characteristic
Type -- second order concept
Rank_lnstance -- e.q Kingdom, Genus, Specie, Model
Froperty -- instance of Characteristic, e.q. Type_Property, T_FProperty (e.g. Color)
T -- first order concept
Location -- Time and Space_Region, e.g. Point_in_Time, Time_Period
Ertity
Concrete Entity
%% Py sical_Entity
W life forrm__organism__being_ ing_thing - any [ving entiby
W object inanimate object phwsical object -- a nonliving entity
%W_part_ piece -- & portion of & natural object
Abstract_Entity -- e.q. Proposition, Mentaly _Crested_Entity
Collection -- e.g. separable or not, ordered or not, disjonctive or conjonctive
Representation_Entity -- Lexical_Data (e.q. Integer), Non_Lexical_Data (e.q. Image)
Atftribute -- Property instance, e.q. Elue
wEntity_Flaying_a Role -- eq Causal Entity, Possessed_Ertity, Material Entity
Situstion -- past, present or imagined State or Process
State -- Situstion not changing noticeabty during a given period of time, e.q. Beleve
Frocess -- Situastion that makes a change during a given period of time
Ewent -- Situation that can cause a change in a short time
Long_Frocess -- Process that may take a long time, e.q. Drive_a_car
Entity_Transformation -- e.g. Delete, Transform, Modify, Create, Assemble
whbstract Operation -- e.g Function, Problern_Sobving_Task
Action -- Process done by a Conscious Goal-directed Entity (e.g.)
wProcess Flaying s_Role -- eg Method
Abstract_ Stustion -- e.q Abstract_Operation
Physical_Situation -- e.g. Phwysical_action, Physical_Happening
% Situation_Playing_a_Role -- e.g State_Playing_a Fole, Frocess_Playing_a_ Fole
Concept_Playing_a Role
Concept_used_in_an_Application -- e.q Road Accident_Anabysis Concept

=

Concept,

oone et reiosa [arapme]

Figure 5: The concept types handling menu showing some high level types.

Concept (brpe) hierarchy handiing

Cormmmancs on the following higrarchy Chosen relstion(s) _Max cepth
Change the relation on which the hierarchy is based | Subtype 1.20
Undo earlier cormmancs g
Search for the following concept (type) Concept (type)
Cornrmands Using the selected concept (type) autd

Represent an element or update 5 concept with the selected concept (type)

bl

Location -- Time and Space_Region, e.q. Point_in_Time, Time_P eriod
#5pace_Region
Ertity
#Concrete Ertity
Py sical_Entity
W object inanimste_object phwysical_object -- a nonliving entiby
~\W_artifact__article_artefact -- a man-made object
~Winstrumentality W artfact article artefact - an artfact that
-~ corveyance_ carrier_transport - something that serves as
~W vehicle W corveyance carrier_transport -- 3 con
~W motor wehicle autormotive wehicle
~W car_guto adtomobie maching motorcar
~Woambulance W car__auto automobile
~W_besch_wagon_ station wagon_ wagon_
~W_cabh hack tawi taxicalby -- driven by £
-~ bus jalopy heap -- 5 car that is old &
~W_sports_car_ sport_car -- a small low car
~W hot rod W car_auto automobie_)
~W_compact_ compact_car -- a small and e
~W corvertible . W car_auto actomokbile
~Wocoupe W car auto automobile_m
~W cruiser_ patrol_car__police_car___prowl_c
~W_hardtop_ W car__auto adtomobie
~W hatchlback_ W car_auto sutomobile.
~W_hearse W _car__auto automobile
-~ jeep land-rover
~W_limo__limousine
-~ racer__race car__racing_car —
~W_roadster_runabout two-seater
~W_sedan__ W_car__auto aufomobile_ mo | e

| B I =]

~ _car__auto automobile machine__motorcar_motor_car - d-wheeled

Done oo W reicas [orapnc]

Figure 6: The unique concept type (with its supertypes and its direct
subtypes) proposed by Wordnet for the lexical entry "auto"

3.2 The concept type lattice

In order to guide and speed the building of the concept type lattice, the tool offers an initial
lattice that collects the important high level concept types needed for representing the content
of atext or for modelling a KB. The high level concept types of the WordNet dictionary are
included in thislattice, then all their subtypes according to WordNet are virtually included.

A KB that is built using concept types coming from WordNet, or specializations of these
types, could rather be easily compared with another KB built in the same way since a lot of
concept type names used in the two KB would be common as well as their meani ngsl. If those
concept types are organized a bit differently in the two BC, automatic procedures could detect
the differences and help to solve them?. As WordNet is very detailed, the knowledge engineer
should rarely have to add intermediate type but rather specialize precise types of WordNet in
order to express the shades of meanings needed for his’her application.

Therefore, in order to ease the uses and reuses of the KB knowledge, we suggest to the
knowledge engineer to use and alias or specialize (or alias) concept types comiog fr
WordNet(for examplein the road accident analysis expertise, W_road__route and some struc-
tural parts of aroad : W_roadbed _roadway and W_shoulder__verge). These types may also
be (undirect) subtypes of Concept _used in_an application (see Figure 5). Hence, the
knowledge engineer may build and work on the minimal hierarchy necessary for its appli-
cation, without being bothered by the high structuring offered by WordNet and our high level
concept types, but without loosing them. This structuring may be not useful for the final KBS
but it is necessary for a good modelling, for powerful seas and infeances, and for easing
validation, extension andeuse Filters could always be applied when only a part of the
ontology is needed.

We now present the high level concept types proposed by the tool. How we specialized these
types by the WordNet high level concept types® will be detailed in another paper. At present,
not all these types are precisely placed.

3.2.1 The upper levels of the lattice

In order to take into account all the aspects of natural language, the top levels of our lattice
(see Figure 5) include third order concept types and second order concept types (the user may
add higher order concept types).

Natural languages have higher oder wods whose instances are types rather than individuals. Examples

from biology include kingdom, phylum, class, a@&r, family, genusand species.. and for characteristics,
color, shape, qualityand condition (Sowa, 1992).

Properties are second order concepts. Attributes are first order concept types and instances of

1. Theconcept types coming from WordNet are precise and have detailed names and comments; therefore we think
that they do not induce distant interpretations. Thisis also an important point for the interpretation and the va-
lidation of the BC. Apart from these advantages, if any other large general ontology would exist, it could also
be usad in the same way by aknowledge engineer for building adetailed and reusable ontol ogy for its application.

2. A lot of problems will have to be solved during the merging of two lattices, for example what to be doneiif dif-
ferent definitions or schemas are associated to the same concept types ? But this merging, or more generally the
reuse of other works, is eased if the works rely on the same basis e.g. WordNet

3. The"WordNet high level concept types' are very poorly structured (its mainly alist). Wethink that for the use
of WordNet in Knowledge Acquisition or Natural Language Parsing, they should first be structured.

subtypes of "Property". As every concept may have properties, and as these properties are
generally inherited, we propose that the properties classification follows the concepts classifi-
cation.

Following Sowa (1992), we divided the first order concepts into entities and situations. Our
subtypes for Entity and Situation include the ones proposed by Sowa (1992), and for the
collection notions the ones proposed by Pfeiffer and Hartley (1992), and the high level types
coming from WordNet. We added a lot of "role types' in order to distinguish them from
"natural types'. For us, arole typeis"asubtype of a natural type, which highlights arole that
this natural type can play in some processes. cause, agent, result, etc. (a role type is not a
natural type). Here are some examples for entities.

Entity Playing_a Role -- subtype de Entity
Causal_Entity -- any entity that causes events to happen (cause of a process)
Goal-directed_Entity -- Problem Solver or interactional agent Entity
Conscious Goal-directed_Entity -- e.g. a person
Non_Conscious Goal-directed Entity -- e.g. an Al agent
Perhaps Goal-directed Entity -- e.g. supernatural forces
Without_Goal_Entity -- non conscious Entity and not an Al_Agent
Concept_used by a Process -- e.g. entities of an application
Recipient_Entity
W _necessity _essential__requirement__requisite__need -- anything needed
Representation_Container -- e.g. atext or audio file
Possessed Entity -- e.g. a Pet
Part_Entity -- something determined in relation to something that includes it
Whole Entity
Proposition_Playing_a Role -- e.g. Belief, Hypothesis, Observations, Norms

In order to specialize the Problem_Solving_Task concept type (see Figure 5 at Operation), we
began to collect some problem solving tasks in the knowledge acquisition litterature (e.g.
Breuker et al., 1987). We represent the models associated to these tasks with concept type
definitions and schemas. Thus, a knowledge engineer could use these models in order to
collect, abstract and model information from documents.

In order to simplify CGs, some subtypes of Entity or Situation may also be subtypes of
Location: for instance, Physical_Entity is also a subtype of Space Region which is a subtype
of Location; thus a relation of type Space_L ocation may connect two concepts of type Entity
or Situation.

3.3 Therelation type hierarchy

The functions to display and handle the relation types are similar to the ones used to display
and handle the concept types. An additional function, "Types of possible relations for the
selected concept (type)"”, will be described later. (Presently CoGITo and then CGKAT do not
enforce the relation type hierarchy to be alattice; the arguments of every relation type must be
defined with known concept types).

Relation tyvpe hievarchy handiing

Commands on the Tollowing hierarchy Relation type Mz depth
| Search for the following relation type | H 1.z0
Hierarchy managetment using the selected relation type é

Types of possible relations for the selected concept (type)

Undo earlier commands

MetaRelstion -- eg Kind, Subtype, Descr, Strrt, Repr
Attribute Relation -- e.g. Chro, Attr, Poss, Name
Component_Relation -- e.q Member, Part, Subtask

Constraint_or_hMeasure Relation -- eq mathematical, spatial and temporal relations
Relation_from_a_Process

% Constraint_or_MMeasure_Relstion_from_a Process -- e.g. Condition, Duration, Succ

SCause - ib's 8 subbtype of Pred

ritistor

Agent

Experiencer

.Recipient

Crhject

Input_Only Object -- used by eq. evaluastion or comparison processes

Ohject_to Modify -- a property onby is modified, e.g. the locstion
Obhject_to Mute -- the object is transformed, e.q. with [Cut], [Destroy], [Mi]
Material
.Parameter
Method
Instrurent
.Purpose
SConsequence -- it's a subtype of Succ and the reverse of Cause
.Resuit
Relation_hiding_a_FProcess -- e.q. Physical_Aggregsation, Father, Summarny

Fielation

oone v W reicoa [arapn

Figure 7: The relation type handling menu showing high level types.

Figure 7 shows the high level relation types proposed by the tool. Most of them come from
Sowa (1984) and Sowa (1992). We had to precise the "Object” relation in order to specify its
different usesin different kinds of actions (see Figure 7). The problem was to find useful high
level categories for guiding classification and retrieval of all possible relations (in a
knowledge acquisition/representation context).

In order to find those categories, we first noted that relations are often used for expressing the
result of a process, or for hiding a process. Here are some examples of such relations.

[Bar]->(Chrc)->[Length]->(Meas)->[Meter: 0.25].

(Plus)- (Physical_Aggregation)-
<-1-[Number: *] <-1-[Physical_Entity: *]
<-2-[Number: *] <-2-[Physical_Entity: *]
-1->[Number: *], -1->[Physical_Entity: *],.

[Proposition: *]->(Summary)->[Proposition:*].
[Proposition: *]->(Contrast)->[Proposition:*].

Writing CGs with such relations is shorter than using the corresponding process concept, (e.g.
[Summarize] instead of (Summary), with case relations (e.g.Agent, Object and Result)) but
we think that there are three drawbacks to do so.

It does not lead the user to explicit knowledge. Moreover, no search or inference can be
made on unexplicit knowledge. For example, compare these two representations.

(Divide)- [Divide]-
<-1-[Number: *dividend] ->(Dividend)->[Number]
<-2-[Number: *divisor] ->(Divisor)->[Number]
-1->[Number: *result] ->(Result)->[Number]
-2->[Number: *remainder],. ->(Remainder)->[Number],.

 If such relations are not defined using their corresponding concept type (like in the following
definition example), knowledge is lost for searches and inferences. Conversely, if they are
so defined, part of the concept type lattice is duplicated in the relation type hierarchy :

relation Summary(x,y) is
[Proposition; * x]<-(Object)<-[Summarize]->(Result)->[Proposition:*y].

 Relations cannot have referent and cannot be precised using relations. For example, it'sim-
possible to specify the author of a summary in a CG that uses the Summary relation type
defined above. Thus, unless the user defines a new (non-binary) relation for each new case,
or redefine the Summary relation and then update all the CGs that include thisrelation, s’he
will use both concept of type Summarize and Summary relations. This is perhaps not
always a conceptual drawback but at least an ergonomic one.

Unary relations are also often used to hide concepts whose referents are continuums of values
e.g. the relations Past, Possible and Necessary. Instead we propose to use the relation types
Point-in-Time and Modality, and the concept types Time and Modality. Then, knowledge on
these notions is uniformly represented, which is good for searches and inferences.

Thus, a distinction must be made between "simple" relations and the ones which hide
concepts of type Process. Thisiswhy we propose to group these last ones into the categories:
"Constraint_or_Measure Relation” and "Relation_hiding_a Process’. The first category
groups relations hiding mathematical functions or measure functions (e.g. spatial and
temporal relations). These relations may also be used to express constraints e.g. Before and
Equal. The second category groups much more "complex" or "artificial" relations, according
to what we have said above. The user may follow the concept type classification for the
relations of this category.

The first two categories of our hierarchy, MetaRelation and Attribute_Relation, come from
Sowa (1992). The third and the fourth ones are two other useful groupings. The command

"Types of possible relations for the selected concept (type)" lists the relations that could be
connected to a concept selected in a CG or to a possible concept of type the one selected in the
"Concept (type) hierarchy handling” menu. The list follows the categories order shown in
Figure 7; hence, the user can find easily the relation s/he wants.

4 COMPARISON WITH RELATED WORK

Our tool may be used as a knowledge acquisition system but also as a flexible and semanti-
cally rich hypertext syste?'nor an Information Retrieval (IR) systérworking on a limited
number of documents. The more or less complex KB needed for these three kinds of appli-
cation, may be built using the next three kinds of complementary techniques (the interest of
each one depends on the amaount of information to exploit and the level of detail needed by
the application in the representation of the information).

« Data analysistechniques: these are statistics on document elements occurrences and co-oc-
currences in lge documents. They may be used in order to make indexes for documents,
to extract the terminology of a domain. Thesaurus and grammatical analysis may also be
used for better classifications (Bourigault, 1995).

« Syntactic and semantic parsing techniques: they enable to extract more or less complex or
precise representations of document elements and of their relations. For IR and hypertext,
representations may be as simple as SGML tags (or keywords) or as complex as CGs. DR-
LINK (Myaeng, 1992) is an IR system currently under development, in which documents
are represented by CGs. Myaeng notes that in IR systems, the main criterion for judging
the quality of retrieved text is "aboutness”, and hence 1) "the IR proces®ismtiin na-
ture from knowledge processing for question-anwering"”, 2) "the limitations of the domain-
dependent nature of state-of-the art natural language techniques can be leessened to a great
extent".Knowledge extraction for building a KBS requires much more semantic "unders-
tanding”. At the present time, precise semantic interpretation of text sentences can only be
done in very limited domains e.g. in subparts of the medical domain. HoWwereget al.

(1994) show that the construction of semantic clusters of concepts with the results of a text
processing phase on a technical document, is a more accessible task. Moretbradiby

ols, called ANKA and MalTe, find equivalent classes of words or phrases, and in order to
do so, they exploit two public domain lexical sources, the Collins Dictionary andN#&t

(in the same way as in our tool, i.e. by issuing commands and then converting the results
into an internal representation).

« Knowledgeis extracted and represented by the user: actually in KA, even if the user is gui-
ded by the results of data analysis or/and natural language processing techniques, s/he
always has yet an important workload to do.

1. The high and explicit structuring of a KB is not only a good support for hypertext or browsing navigation but
also prevents user disorientation as Bernstein (1990) has shown. Besides, the user may use the high-level and
precise requests that are possible on a CG database (i.e. the KB of the tool) in order to find information in do-
cuments, i.e. for Information Retrieval (IR). However, our tool is not well adapted for document retrieval or
large-scale hypertext management, since these applications work on a lot of information that must be extracted
automatically or even semi-automatically. An automatic parser could be added to our tool, but then the extracted
information would not be complex enough to justify the use of a KB. For knowledge acquisition, very detailed
knowledge is extracted and organized, this cannot be done by a natural language parser.

2. IR is a process of identifying all and only those (part of) documents that satisfy user’s information needs.

Shelley (Anjewierden and Wielemaker, 1992) and the K-Station (Albert and Vogel, 1989) are
KA tools that support respectively KADS-I (Wielinga et al., 1992), a model-driven KA
methodology, and KOD (Kuntzmann-Combelles and Vogel, 1988), a more data-driven metho-
dology. These tools enable their users to set hypertext links between portions of text and
respectively KADS-I and KOD entities (the text is not structured). The modelling methods
supported by these tools are only knowledge acquisition oriented and hence do not enable the
user to represent sentences or document elements. On the other hand, CGs may be used to
represent KADS-I or KOD entities and their relations. Hence, the user of our tool may follow
the KADS-I or KOD methodology, or even both. Representing knowledge with CGs has many
advantages: 1) the language has a great representation power, but is easy to use and formal
enough to support validation techniques; 2) powerful searches may be done on knowledge
using graph matching operations.

Our tool may also be used as away to set semantically rich hypertext links between document
elements. In order to do so, present hypertext system use types for document elements and
hypertext relations. Such semantic types are often application-dependent and are hard to find
by Natural Language Processing (NLP) techniques. However, MacWeb (Nanard and Nanard,
1993), an hypertext system that is oriented toward KA, semi-automatically extracts a semantic
network from a french technical text and then uses it for handling hypertext navigation
between various short portions of text (the anchors of the concepts). As this network may be
enriched manually, this tool may be used for KA. CGKAT is similar to this one. However, 1)
the MacWeb representation language has less representation power than the CG formalism®;
2) our tool does not include NLP techniques but let the user filter and represent any document
element or the information it contains, at the needed level of detail. Hence, the user may
follow any KA methodology (and if s’lhe wants, s’lhe may use the results of NLP techniques).
Additionally, s’he is guided for the choice and the organisation of his/her concept and relation

types.

Although we were not aware of the existence of CODE4 (Skuce and Lethbridge, 1995), the
CGKAT features we presented in the second part of this article are similar to some of this
general purpose knowledge management system?, except that CODE4 does not use WordNet
but proposes some existing specialized KBs (using the same top-level ontology). However, in
the near future, CGKAT will also have many functions to view, compare and handle the
knowledge stated by various expert and represented by various knowledge engineers.

1. The CG formalism islogic based and intended to have a smooth mapping with natural language. The MacWeb
knowledge representation language is object oriented and apparently does not enable to formally represent
quantification nor sets, hence it couldnot formally represent a sentence like "There is only one person to which
these two boys may speak to". And thereis no computabl e subsumption rel ation between portions of the seman-
tic network.

2. CODE4 features aframe-based representation with a number of inheritance and inferencing modes, aflexible
graphic user interface with various graphing facilities, a hypertext mode of browsing, the ahility to specify func-
tional computation like in a spreadsheet, an optional simple restricted English-like syntax, and document scan-
ning and lexicon management facilities. CODE4 is written in Smalltalk.

5 CONCLUSION

This paper has presented a tool that helps to build a KB. Hypertext navigation is enabled
between knowledge and the document elements where it come from. Hence knowledge and
results of searches on the KB may be documented. In the near future, searches will be done
using a browser that we are currenly developing and a question-answering system developed
by another team. @are now studying how to use this last system for answering common
explanation demands like e.g. "In which situation X is used ?" or "Why doing X ?".

For guiding knowledge representation and easing its later reuse, given a lexigahernioyl
proposes various concept types. In order to do this, it exploits the on-line semantic word
database WdNet and the Wrdnet ontology is virtually included in the lattice. In order to add
semantics to this ontologyand ease knowledge retrieval and knowledge deduction, we
integrated it into Sowa’ top-level ontologyAt the present time, only the "Is-a" relation
between word meanings is exploitede Will do the same kind of work for other relations e.g.
"Part-of" and "Cause-of". Any relation type may be defined with the concept type it underlies.
Hence, we mainly focused on concept types. Howewerlso have proposed top-level relation
types for structuring the relation hierarclayd thence guiding the knowledge engineer

In this article, we have not developed the multi-user and multi-expertise aspects since their
handling is not yet implemented. However a concept type aliasing function is being imple-
mented for enabling users to view knowledge according to their lexical preferences and hence
easing knowledge sharing. The identifier of a user or an expert may already be associated to
any knowledge of the KB: concept, relation, CG, concept type, etc. Then, adapted CGs
matching procedures could filter or compare knowledge (of a single KB) coming from various
experts or knowledge engineerseWill test the adequacy of the tool functions with the
modelling of a "car accident analysis" expertise which involves the cooperation of several
experts and which will be represented by various knowledge engineers.

6 ACKNOWLEDGEMENTS

The author thanks the members of the ACACIA team, and especially Dr Rose Dieng, Dr
Olivier Corby and Dr Laurence Alpay for their advices on the redaction of this article and the

building of the tool. He is also indebted to his referees for their comments and suggestions.
The ACACIA team work under contracts with the "Ministére de I'Enseignement Supérieur et

de la Recherche" (contract n. 92 C 0757) and the "Ministere de I'Equipementadsgorts

et du Durisme" (contract n. 93.0003).

7 REFERENCES

Albert P. and Vogel C. (1989KOD-STATION un envionnement intégré pour le génie cognitifi "Génie
logiciel et systémes experts"”, No19, pp. 28-30, Juin 1989.

Amergé Ch., Corby O., Dieng R., Fleury D., Giboin A., Labidi S. and Lapalut S. (18&q)isition et modéli-
sation des connaissances dans le eatdlune coopération emplusieurs experts : Application & un systéme
d'aide a I'analyse de I'accident de laute Rapport intermédiaire du "Ministére de I'Enseignement Supérieur
et de la Recherche" (contract n. 92 C 0757).

Anjewierden A. and Wielemaker J. (1998helley - computesided knowledge engineerintn Knowledge
Acquisition (1992) 4pp 109-125.

Bernstein M. (1990)Hypertext and technical writingn Proc. DEXA’90, Int. Conf. on Databases and EXpert

systems Applications, Vienn (Austria), August 1990.

Bourigault D. (1995)LEXTER, a &rminolgy Extraction Softwarfor Knowledge Acquisitiondm Exts In Proc.
of the ninth Knowledge Acquisition for Knowledge-Based Systems Workshop (KAW’'95), Gaines, B.R.
Eds, University of Calgary, Banff, Alberta, Canada, February 26-March 3, 1995.

Breuker J., Wielinga B.J., Someren M., Hoog R., Schreiber G., Greef P., Bredeweg B, Wielemaker J. and
Billault J. (1987). Model Driven Knowledge Acquisition: Integtation Models Deliverable Al, Esprit
Project 1098 Memo 87, VF project Knowledge Acquisition in formal domains. Breuker J. Eds.

Carbonneill B. and Haemmerlé O. (1998hplementing a CG Platform for Question/Answer and DataBase
capabilities Proceedings of the Second Internationalrk8hop on PeirceQuébec, August 1993.

Carbonneill B. and Haemmerlé O. (199RDCK: un systeme de Question/Réponse fondé sur le formalisme des
Graphes Conceptuel$n Actes du 9éme Congrés Reconnaissance des Formes et Intelligence Atrtificielle,
Paris, Janvier 1994.

Chein M. and Leclére M. (1993\ cooperative ppgram for the construction of a concept type lattResearch
report No 93075 of LIRMM1993.

Feng C., Copeck T., Szpakowicz and Matwin S. (198émantic Clustering Acquisition of Partial Ontologies
From Public Domain Lexical Soces: First ExperimentsVolume 1 of Proceedings of the 8th Banff
Knowledge Acquisition for Knowledge-Based Systems Workshop; Gaines B.R. Eds, University of Calgary,
Musen M., Stanford University; Banff, Alberta, Canada; January 30 to February 4, 1994.

Kuntzmann-Combelles A. and Vogel C. (198RD: a support envisnnement for cognitive acquisition and
managementn Safety and Reliability Symposium, 1998.

Liddy D.E. and Sung H.M. (1992DR_LINK Document Retrieval using Linguistic Knowledgej&ut Descrip-
tion. In Revue ACM: SIGIR Forum & 26 no 2, Fall 92p 39-43.

Quint V. and Vatton I. (1992Hypertext aspects of the Grif struotdreditor: design and applicatioResearch
Report No 1734 of INRIAJuly 1992.

Mann W. and Thompson S. (198Rhetorical Structur Theory: ®ward a functional theory of text ganization
In Text, 8, 3, 243-281.

Myaeng S.H. (1992)Conceptual Graphs as a Framework faxT Retrieval Conceptual Structures: current
research and practice; editors: Nagle T.E., Nagle J.A., Gerholz L.L., and Eklund P.W.; England , Ellis
Horwood Workshops, 1992.

Miller G.A., Beckwith R., Fellbaum C., Gross D. and Miller K. (1998ixe Papers on WfdNet CSL Report
43, Cognitive Science LaboratoriPrincetown UniversityJuly 1990. (These papers and the system are
available by anonymous ftp at clarity.princeton.edu, subdirectory 'pub’).

Nanard M., Nanard J., Massotte A.M., Chauché J., Djemaa A., Joubert A., Betaille H. (08@&taphoe du
généraliste: Acquisition et utilisation de la connaissance osgmpique sur une base de documents techni-
ques. Proc. JAVA'93 (Journees sur I'Acquisition, la Validation et I'apprentissage), 5émes Journées
Acquisition des Connaissances du PRC-GDR-IA du CNRS, Saint-Raphaél, 31 mars - 2 avril 1993.

Nanard J. and Nanard M. (199%hould anchors be typed too ? An experiment with Mack®foc. HTX93, 5th
ACM Conf. on Hypertext, ACM Press, Seattle, Nov. 1993.

Pfeiffer H.D. & Hartley R.T. (1992)The Conceptual Pigramming Envisnment, CPIn Conceptual Structures:
current research and practice (editors: Nagle, T.E., Nagle, J.A., Gerholz, L.L., and Eklund, P.W.), England,
Ellis Horwood Workshops, 1992.

Skuce D., Lethbridge T. (1995 C0ODE4: A Unified System for Managing Conceptual Knowle@igeappear in
Knowledge Acquisition. (See also http://www.csi.uottawa.ca/~ctran/code4.html).

Sowa J.F. (1984)Conceptual Structws: Information Pocessing in Mind and MachinéAddison-Wesley,
Reading, MA.

Sowa J.F. (1992Conceptual Graphs Summar@onceptual Structures: current research and practice (editors:
Nagle, T.E., Nagle, J.A., Gerholz, L.L., and Eklund, P.W.), England , Ellis Horwood Workshops, 1992.

Wielinga B., Schreiber G. and Breuker J. (199RADS: a modelling apmach to knowledge engineerinig
Knowledge Acquisition (1992),4p 136-145.

