
An Ontology for Specifying and Parsing

Knowledge Representation (KR) Structures and Notations

         Philippe Martin  (Philippe.Martin@univ-reunion.fr) 1   and
Jérémy BÉNARD  (jeremy.benard@logicells.com) 2

1 Associate Professor,   EA2525  LIM,  University of La Réunion island,   France
(+ adjunct researcher of the School of ICT,  Griffith University,  Australia)

2 PhD student,   GTH/Logicells + University of La Réunion island,   France

1/10



Plan

1.  Introduction - solving old parsing/export/translation problems 

      =>  "fully" representing  the involved languages (here KRLs)

2.  Top level ontology - uppermost types of our ontology for KRLs (models + notations)

3.  KRL model ontology - some subtypes of Abstract_phrase

4.  Example - representation of a simple phrase and its abstract structure

5.  Example - FL specification of the abstract parts of 2 very simple notations

6.  Demo

7.  Conclusions

2/10



          1.  Introduction - solving old parsing/export/translation problems 
                   => "fully" representing the involved languages (here KRLs)

Classic approaches: 
  * parser generators (e.g., since 1975, Lex&Yacc)   +   translation/export  procedures/rules
  * "structured document/editor/model" formating approaches,  e.g.,  XML + XSLT + CSS + GRDDL
                                                      or before 1996 (Thot, Centaur, ...):  S/Typol  +  T +  P 
                                                                                       or since 2005:  RDF + Fresnel/SparqlTemplate/...
  * XBNF (Botting, 2012): EBNF extention towards KR
 =>  exploitation of grammars+ASTs only,  not KRs of KRLs
         => writing of one syntactic model (grammar/DTD/script/template) for each structure/presentation
               + lack of inferencing possibilities
               =>  - for programmers:  importing, exporting or translating between KRLs is "difficult"
                      - for KRL end-users:  adapting, extending or mixing notations is nearly impossible
                      => knowledge sharing and re-use is reduced

Fully ontology-based approach (=> use of "language ontologies"):
- 1 ontology of KRL models (-> extending existing ones) + 1 ontology of KRL notation+presentation (new !)
- letting each end-user specialize these ontologies to specify a new KRL (if he wishes to) 
- 1 generic tool for parsing/exporting/translating from/to/between these specified KRLs

3/10



2.  Top level ontology - the uppermost types of our ontology for
                  KRLs (models + notations)

 

4/10



                                                                          Thing
                                                                                             
       Situation                                    Entity                             description

State      Process                 Spatial_entity        ...          Description_object

         Physical_entity             Descr_content  instrument    Descr_instrument                      Descr_container

                 Logic_proposition    Question                     Language_or_Language-element                  File
                                                           Concept         

                                                                                      Language    part    Language-element            RDF_file
                                                                                                                               = Gterm

Logic   logic  Language_model   model Notation

OWL-DL

               Semantic-L   Structure-L   Presentation-L   ...        Abstract_gTerm  presentation   Concrete_gTerm
                   = KRL                                                                                                       model
                                    XML    Grammar-L     CSS    
KRL_model                                                                  Abstract_phrase                     Positional_cTerm
                                                                                            Individual_gTerm                          Frame_cTerm
Graph-based_model                                          format                                     Cterm_with_named_arguments
                                                                 

Frame_model       RDF+OWL-DL   model  RDF+OWL-DL/XML

5/10



3.  KRL model ontology - some subtypes of Abstract_phrase

                                                           Abstract_phrase
                                                                                             
        Modularizing_phrase                                  Non-modularizing_phrase

   Module   part   Module_directive                  Formula

  Document   Import_directive          Composite_formula       Atomic_formula_or_reference_to_formula
                              

                                Quantification     Conjunction_phrase                      Frame   part    Link

                                                              Conjunction_of_links                          equal

                                                                                  Frame_as_conjunction_of_links_from_a_same_source 

6/10



4.  Example - representation of a simple phrase and its abstract structure

In English:  "There exists a car which is red  (one shade of red; it may have other shades or other colors)".

In Formalized-English:  `a Car with color a Red´.     In RIF-PS:  Exists ?car ?red  ( color( ?car#Car  ?red#Red ) )
                           In FL:   a  Car   color :  a Red ;         In RIF-PS:  Exists ?car ?red  ?car#Car [ color -> ?red#Red ].
                 In N-Triples:   Car8 color Red3 .    Car8 type  Car .     Red3 type Red .   

                                                                          Language-element = Gterm

                                    Abstract_phrase                                                 Individual_gTerm  

   Quantification    Conjunction_phrase   Atomic_formula             Fterm_or_variable         Operator 

 Existential_quantification              Frame   part     Link                Functional_term           Link_operator
                                                                                                                          Gterm_reference

                                                        Link__A-car-with-color-a-red      Concept-type   Relation-type 
                                                           part                                                part 

      Existential-quantification__a-Red    part    Concept-type__Red                               Link-operator__color
                                                                                                                                                part
                                                                                                                       Relation-type__color

7/10

 

 

 

 

 

 

 



5.   Example  -  FL specification of the abstract parts of 2 very simple notations

N-triples  =  ^( KRL   r_only_such_part_of_that_type :   ^(Phrase > Link) 
                                                                                              ^(Individual_gTerm  >  Constant_or_variable) );

JSON-LD    r_only_such_part_of_that_type :  
    ^(Phrase        rc_type :  fc_list-like_infix-frame_type _(.{JSON-LD},"","{",",","}"))
    ^(Half_link   rc_type :  fc_half-link_type _(.{JSON-LD},"",":","",""))
    ^(Module_header   rc_type :   fc_list-like_infix-frame_type _(.{JSON-LD},'"@context:"',"{",",","}"))
    ^(Module_body      rc_type :   fc_list_type _(.{JSON-LD},"","",",""))
    ^(Formula   >   ^(Minimal_frame   r_operator :   1  Constant_gTerm))   //only 1 destination per link
    ^(Fterm_or_variable   >  Constant_or_set_or_closed_list)
    ^(Set   rc_type :   fc_list_type _(.{JSON-LD},"[",",","]"))  
    ^(Closed_list   >   ^(Frame   r_part :  1 .[r_container, Closed_list],  //1st way to represent a list in JSON-LD
                                                    rc_type :  fc_half-link_type _(.{JSON-LD},"","@container",":","@list","") )
                                  ^(Frame  r_part :  .[r_list,  1 Set], 
                                                   rc_type :  fc_half-link_type _(.{JSON-LD},"","@list",":","","") ) );   //2nd way

8/10



6.   Demo

9/10



7.   Conclusions

The examples focused on "abstract terms" but specifying "concrete terms" is similar.

Specifying grammars (instead of KRLs) is also similar.

 - Less lines to write for specifying a KRL model+presentation than to write its grammar

 - No parsing/translation/export tool/schema to write in addition

=> Much simpler and much more powerful:  - end-users can specify their own KRLs

                                                                      - models/notations/KRLs can be compared

      => a much better alternative to XML as a meta-language

           and XML+XSLT+CSS can be re-used for presentation purposes.

Given the specification of a target KRL, generating knowledge in this KRL has been implemented.

Allowing the use of a presentation language (e.g., HTML or XML+XSLT+CSS) for specifying the

    presentation (e.g., in bold) of particular language elements has not yet been implemented.

Given the specification of a source KRL, parsing is currently done in an ad-hoc way  

     and the generation of parsing rule in a given grammar has not yet been implemented.

10/10


