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Abstract—This  article  first  distinguishes  constraints  from
rules,  and descriptive constraints  from prescriptive  ones.  Both
kinds can be used to calculate a constraint-based completenesses
(as opposed to a real-world-based completeness), i.e. evaluating
how much of a knowledge base is complete  with respect to some
constraints, e.g. for evaluating how well this base follows given
ontology design patterns or best practices. Such evaluations may
also  guide  knowledge  elicitation and  modelisation.  This  article
explores  the  ways  constraints  can be  represented  via  relations
between classes, hence via any knowledge representation language
(KRL) that has an expressiveness at least equal to RDF or RDFS.
Compared  to  the  popular  practice  of  both representing  and
checking constraints via queries, this approach is as simple, offers
more possibilities for exploiting both knowledge and constraints,
and permits the selection and use of inference engines adapted to
the expressiveness of the exploited knowledge instead of the use
of restricted or ad hoc constraint-validation tools. This approach
is also modular in the sense it separates  content from usage: the
represented “content focused constraints” can then be exploited
via few “content independent” queries, one for each usage and
kind of constraint. This approach provides more possibilities.
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I. INTRODUCTION

Knowledge  representations  (KRs)  are  formal  descriptions
enabling automatic logical inferencing, and thus automatic KR
comparison, search, merge, etc. KRs are logic formulas, e.g. the
binary predicates of 1st-order logic; these predicates are called
triples or  property instances in RDF and  binary relations in
Conceptual Graphs (CGs) [1]. For the purpose of clarity, this
article  uses  the  intuitive  terminology  of  CGs:  (information)
objects are  either  types or  individuals,  and  types  are  either
relation types or concept types (classes and datatypes in RDF).
A formal knowledge base (KB) is a collection of such objects
written using a KR language (KRL). An ontology is a KB that is
essentially about types, rather than about individuals.

Creating  a  KB or  evaluating  its  quality  – for  knowledge
sharing or exploitation purposes, or for designing or generating
software, or evaluating their qualities – are difficult. Models and
constraints  (e.g.  design patterns)  help these tasks and can be
stored into an ontology. E.g., the author of this article is building
an  ontology  representing  and  organizing  ontology  design
patterns as well as software design patterns.  Reference [2],  a
survey on quality assessment for Linked Data, provides many
dimensions and metrics for evaluating the quality of KBs and
hence helping the selection or design of KBs. One of the quality
dimensions is the (degree of) completeness of a KB with respect
to some criteria or constraints:  concisely, “its completeness”.

Evaluating this degree is common in various tasks or fields but
is  performed  differently  by  different  tools  and  sometimes  in
implicit or  ad hoc ways. Examples of such tasks or fields are:
i) the automatic/manual extraction of knowledge or the creation
of a KB, ii) the exploitation of ontology design patterns,  KB
design libraries (e.g., the KADS library) or top-level ontologies
(e.g.,  DOLCE), and iii) the evaluation of ontologies or, more
generally, datasets. In this last field, as noted in [2], completeness
commonly refers to a degree to which the “information required
to satisfy some given criteria or a given query” are present in the
considered dataset. To complement this very general definition,
this article distinguishes two kinds of completeness:

 Constraint-based completeness measures the percentage
of  elements  in  a  dataset  that  satisfy  explicit
representations of what must or must not be represented
in the dataset. These representations are constraints such
as  integrity  constraints  or,  more  generally,  those
expressed by ontology design patterns and schemas of
databases or of structured documents. E.g.: the constraint
that, in a particular dataset, at least one movie must be
associated to each movie actor. 

 Real-world-based completeness measures the degree to
which certain real-world information are represented in
the dataset. E.g., regarding movies associated to an actor,
calculating  the  completeness  may  consist  in  dividing
“the number of  movies  associated to this actor  in the
dataset” by “the number of movies he actually played in”.
Either  the  missing  information  are  found  in  a  gold
standard  dataset or  the  degree  is  estimated  via
completeness oracles [3], i.e. rules or queries estimating
what is missing in the dataset to answer a given query
correctly. The four kinds of completeness collected by [2]
–  schema/property/population/interlinking completeness
– assume a closed-world-assumption and a gold standard
dataset. Thus, they are real-world based completenesses.

One  way  to  define  or  calculate  the  constraint-based
completeness of a KB is to divide “the number of statements
satisfying the constraints in that KB” by “the total number of
statements in the KB”. As a variant, instead of statements only,
one may want to consider objects, i.e. measure the percentage of
objects  for  which  all  relations  from/to  them  satisfy  the
constraints. Other variants may be defined by considering only
certain kinds of objects or statements. Defining constraints via
KRs, instead of via queries, permits the definition of “content-
independent  (alias,  domain-independent)  queries”  to  exploit
these  constraints.  Otherwise,  a  different  (content-dependent)
query  has  to  be created  for  each  variant  of  constraint  based
checking or completeness. Because of this lack of modularity,
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when stored in an ontology, content-dependent queries are also
less easily organized than content-independent ones. 

This article does not address real-world based completeness
but the techniques this article proposes may also be used for
representing certain domain-specific parts of the rules used for
calculating  real-world  based  completeness.  From  now  on,
“completeness” refers to constraint-based completeness.

Section II explores the first research question of this article:
what does the expression “must and must not be represented in
the dataset” entail or, more precisely, given the “descriptive vs.
prescriptive” distinction, what kinds of constraints need to be
considered  for  evaluating  constraint-based  completeness via
content-independent queries? 

Section III  proposes  an  approach to  answer  a  second
research  question:  how  to  represent  constraints  in  a  KRL
independent way – or, more precisely, in any KRL that has an
expressiveness at least equal to RDF or RDFS – even though
actually  defining  the  semantics  of  some of  these  constraints
would  require  much  more  expressive  logics?  The  proposed
solution  relies  i) on  the  representation  of  constraints  via
restricted constructs based on  relations between classes (or to
classes),  e.g.  rules  using  the  rdfs:subClassOf relation  for
representing a restricted implication between the condition and
conclusion of the rule, ii) on the use of certain special types for
specifying that a statement is a constraint of a certain kind, and
iii) on  the  exploitation  of  these  types  in  content-independent
queries. Such constraint representations can then be exploited
via most inference engines and KR query languages instead of
tools tied to a particular KRL or goal (knowledge acquisition,
ontology design pattern application, ontology evaluation, etc.). 

Section IV shows commands (queries  or  update requests)
answering  a  third  research  question:  how  to  implement  the
above cited approach in SPARQL or slight extensions of it.

Section V.A illustrates applications or use cases for the given
content-independent  queries.  It  is  actually  a  summary  of
Section IV in [4], an unpublished extension of this article and a
companion Web site for this article. Section V.B evaluates the
proposed approach and compares it to other ones.

II. DEFINITIONS FOR THE CONSIDERED CONSTRAINTS

A. Considered Constraints: Just For Checks, Not Inferences

In this article, as in KIF (Knowledge Interchange Format)
[5], a rule is a statement that can be represented in the form
“X =>> Y” where  “=>>” is  a  restricted version of  the logical
implication (“=>”): it supports modus ponens, not modus tollens.

A rule allowing the derivation of a non-modal statement is a
rule that  can be represented in the form “X =>> Y” where Y
does not include a modality (e.g., must). An example is “if x is a
Person then x has a parent”.  If this statement and “Tom is a
Person” are in a KB, an inference engine can derive the non-
modal statement “Tom has a parent”.

Reference  [6]  defines  constraints  as  positive or  negative,
respectively expressing statements of the form “if A,  B must be
true” and “if A,  B must be false”. Thus, [6] defines constraints
as rules where the conclusion has a “must” modality. These are
the  kinds  of  constraints  considered  in  this  article,  with  the
interpretation that in such constraints the “must” entails that the

constraints can only be used for checking statements, i.e. that
they  are  not rules  allowing  the  derivation  of  non-modal
statements.  More formally,  this means that  such positive and
negative  constraints  can  respectively  be  translated into  the
forms “A ∧ ¬B =>> false” and “A ∧ B =>> false” where A and B
do not contain a “must” modality and A may be empty. As an
example,  consider the positive constraint “if x is a Person, x
must have a parent”. From this constraint and the fact “Tom is a
Person”,  an  inference  engine  must  not derive  “Tom  has  a
parent”. It may derive “Tom must have a parent” but, in practice,
such derivation is not made. As a somewhat opposite example,
RDFS-aware engines do not exploit relations of type rdfs:domain
or  rdfs:range as  relation signature constraints but as  inference
supporting statements:  when a relation  r has  a type partially
defined by an  rdfs:domain (vs.  rdfs:range) relation, RDFS-aware
engines may infer a type for the source (vs. destination) of r.

In this article, constraints that are directly represented in a
form ending by “=>> false” – or, equivalently,  “=>> ⊥” – are
called constraints in inconsistency-implying form. Not all KRLs
allow  to  represent  rules  (instead  of  – or  in  addition  to –
implications); in those that do, representing negative constraints
using the inconsistency-implying form is  easy  but  using this
form for representing positive constraints may not possible: the
KRL may not permit the representation of the negation in the
“¬B” part. This in why in this article  i) negative constraints are
represented  in  inconsistency-implying  form,  and  ii) positive
constraints are in the form “A =>> B” but with a representation
supporting the distinction between a constraint and an actual
rule. Furthermore, as in most rule-based systems, in the rest of
this article the  A and  B parts share variables. More precisely,
these parts are representations of relations from a same object
(i.e. from a type or an individual, including a relation or a more
complex statement since they are particular kinds of individuals).

In  the  research  literature  on  constraints,  these  ones  are
generally not represented – or checked – via modal logic based
KRLs  but  rather  using  queries,  e.g.  via  SPARQL  or  the
nonmonotonic-epistemic-logic query language EQL-Lite [7]. In
(unidirectional)  rule  based  systems,  rules with  empty
conclusions  (or  “false”  as  conclusions)  are  handled  like
constraints. However, this is a particularity of these systems. It
should not be relied upon for general knowledge representation
purpose. For such a purpose, the special semantics of constraints
has to be made explicit via special  syntactic sugar or special
types. Since KRLs rarely propose syntactic sugar for expressing
constraints,  a  more  generic  approach  for  expressing  that  a
statement is a constraint, as opposed to an inference supporting
statement, is to state that this statement is an instance of a type
expressing  a  particular  kind  of  constraint  (as  explained  in
Section III.A).  Then,  these  constraints  can  be  retrieved  and
exploited by content-independent queries such as those provided
below.  These constraints  can also be directly  interpreted  and
exploited by inference engines designed to take into account the
used constraint types. In any case, either i) constraints are not
represented  in  a  way  they  can  be  exploited  as  inference
supporting statements, or ii) the results of these inferences must
not  be  detrimental,  i.e.,  must  not  influence  the  checking  of
constraints. Both techniques will be illustrated below.

B. Prescriptive (i.e. Not Using All Inferences) vs. Descriptive

As noted in [8], a common distinction between engineering
models is whether they are i) descriptive of some reality, e.g.
like most ontologies (e.g., by default, ontologies written in RDF



or OWL), or ii) prescriptive of what must be in the considered
dataset,  as  with  system  specifications,  meta-models,  XML
schemas, database schemas, SHACL statements, etc. Similarly,
this  article  distinguishes  two kinds  of  constraints.  First,  like
definitions or axioms,  descriptive constraints enable inference
engines to check the use of certain formal terms, if and only if
these terms are used. On the other hand, prescriptive constraints
enable inference engines to check that certain formal terms are
actually used  (not  just  inferred)  or  not  used,  under  certain
conditions. E.g., prescriptive constraints can be used for checking
that if the instances of a type are defined as (necessarily) having
certain  relations,  these  relations are  explicitly given by users
whenever  they  create  an  instance  of  such  a  type.  Here,
“explicitly” emphasizes that these relations must not exist just
because they were automatically deduced, e.g. by inheritance,
but  only  because  they  were  set  by  a  user  (manually  or
automatically). As an example, assume that a KB includes the
rule “if x is a Person, x has a parent” and that a user enters that
“John is a Person” in the base of facts of this KB (this base is
the set of relations from/to individuals; for a description-logic
based KB, this is its A-box). Even if this KB also includes the
descriptive constraint “if x is a Person, x must have a parent in
the  represented  world  (descriptive-must)”,  an  error  message
should not be given by a KB checking mechanism since this
constraint is satisfied (by inferencing) without the user having to
represent  a  parent  for  John.  On  the  other  hand,  if  the  KB
includes the prescriptive constraint  “if  x is  a Person, x  must
have a parent in the base of facts (prescriptive-must)”, the adding
of a new person without a relation to a parent must be rejected.
For  constraints  in  inconsistency-implying  form,  there  is  no
distinction between descriptive and prescriptive: they enable the
detection of an incorrect KR whether it has been inferred or not.

To check  a positive  prescriptive constraint,  any inference
may be useful for testing the condition of this constraint, i.e. for
matching objects in the KB against this condition. As illustrated
in the previous paragraph, this is not the case when testing the
main (alias, first) object of the conclusion of the constraint, i.e.
the  object  whose  relations  are  mandatory  for  all  objects
matching the condition of the constraint. When testing this first
object, if some mechanism automatically associates relations to
some of  the  checked  objects  –  e.g.,  by  dynamic  lookup for
inherited relations during each object matching, or by forward
chaining  saturation  –  this  mechanism  must  be  temporarily
disabled  or  bypassed.  However,  disabling  or  changing  these
mechanisms (or, in other words, the used entailment regime [9])
generally  cannot  be  done  in  the  middle  of  a  query.  E.g.,
SPARQL  does  not  permit  such  a  change.  Hence,  instead,
bypassing methods are needed. Section III.B proposes one. 

To sum up, such prescriptive constraints are original, enable
checks that descriptive constraints cannot, and are not equivalent
to  the  use  of  the  closed  world  assumption.  The  techniques
presented by this article for defining and checking prescriptive
constraints can be performed with open-world assumption. Non-
modal  logical  expressions  are  only  descriptive.  E.g.,  simply
stating  that  “any  Person  (necessarily)  has  a  parent”  is  only
descriptive. Content-independent queries, special procedures or
inference  engines  exploiting  prescriptive  constraints  need  to
distinguish them from descriptive ones via their types. 

C. Descriptive Constraints Restricted To Named Individuals

When using a constraint to check if certain objects in a KB
satisfy a methodology or an ontology design pattern, one might

want to take into account automatically deduced relations but
only if they are  from or to named individuals (“IRIs” in RDF
terminology),  not  if  they are  between anonymous individuals
(“blank nodes” in RDF terminology). Such a “partly descriptive
- partly prescriptive” constraint may be termed “descriptive but
restricted to named individuals”. It  requires the author of the
constraint to represent which individuals must be named.

Although  RDFS  provides  the  type  rdfs:label for  relations
between an individual and its names, it does not provide a type
for relating an individual to its identifiers (even though they are
unique names)  since  IRIs  (International  Resource  Identifiers)
are directly interpreted as named individuals in RDF. OWL also
does not provide such a relation type which could be used for
distinguishing which individuals  are (or must be) named from
those  who  are  not  (or  need  not  be).  In  OWL2-DL,  this
distinction can be made if each named individual is declared as
instance of the class owl:NamedIndividual. However, doing so in
OWL2  Full  still  does  not  permit  to  make  the  distinction.
SPARQL supports  the  distinction via  the  operators  isIRI and
isBlank. Hence, the solution proposed in this article is to provide
i) the relation type cstr:id for enabling the authors of a constraint
to  specify  which  individual  must  have  an  identifier  (as
illustrated in the second to last paragraph of Section III),  and
ii) a  SPARQL update request  permitting the adding of  cstr:id
relations  to  each  named  individual  type  in  a  KB  (cf.
Section IV.B). Thus, if some descriptive constraints use  cstr:id
relations and if this last SPARQL update request is run, these
constraints  will  correctly  be  checked  by  content-independent
queries for descriptive constraints (e.g., see Section IV.D.1).

III. APPROACH FOR REPRESENTING AND EXPLOITING 
THE CONSIDERED CONSTRAINTS

A. Using Constraint Types

Reference [10] shows that SPARQL queries can represent
and  check  certain  kinds  of  integrity  constraints that  exploit
some forms of the Unique Name Assumption or Closed World
Assumption. Instead, as explained in the introduction, the goal
is here to enable the representation of constraints that i) can be
exploited via content-independent queries, ii) can be represented
via any KRL that has an expressiveness at least equal to RDF or
RDFS, and iii) can be marked as descriptive or prescriptive (this
distinction is not made in [10]).

To that end, the proposed approach is to introduce a few
types  for  constraints.  By  setting  instanceOf  or  subtypeOf
relations from certain KRs to some of those types, KB authors
can state that these KRs are constraints and can indicate which
kind of constraints. Thus, these constraints can be exploited by
content-independent queries or inference engines that understand
the used constraint types. For these engines, the types change
the way the statements must be interpreted. This approach is
similar to the use of OWL2 types in RDF statements and their
exploitation by OWL2-aware inference engines. The name of
the  proposed  ontology  of  constraint  types  is  CSTR.  In  this
ontology,  cstr:Constraint is  the  supertype  of  all  types  of
constraints.  Similarly,  the  type  cstr:Prescriptive_constraint,  a
subtype of cstr:Constraint, enables one to state that some rules are
actually prescriptive constraints or to retrieve all and only such
constraints.  The  prefix  “cstr:”  in  these  identifiers  is  an
abbreviation for the namespace http://www.webkb.org/kb/it/CSTR.
Other types are later referred to, when needed. Presenting the
rest of CSTR is not needed in this article.



B. Using “Clones Without Types” For Bypassing Certain 
Inferences When Checking The Conclusions Of Positive 
Prescriptive Constraints

For  adequately  checking  positive  prescriptive  constraints
Section II.B introduced the need for  temporarily  disabling or
bypassing “inference mechanisms that automatically associate
relations  to  objects”  when  testing  the  first  object  of  the
conclusion of the constraint. This subsection proposes a method
to so. Statically (i.e. via a pre-treatment of the KB like the one
given in Section IV.C) or dynamically (i.e. during the checking
of such constraints), this method creates a “clone without type”
of each object matching the condition of such a constraint and
then, when checking its conclusion, does so on the clone instead
of the original object. The clone has the same relations as the
original  object  except  for  instanceOf relations  (it  has  none;
furthermore,  if  it  is  a  named  individual,  it  has  an  identifier
different  from the original  object).  Thus,  by so using  clones
without types, “inferences exploiting types to associate relations
to an object” are avoided. As an abbreviation, from now on, this
is referred to as avoiding  inheritance. In the case of RDFS or
OWL entailments,  “avoiding  inheritance”  means  that,  when
searching relations associated to an object, the types of this object
and their superclasses are not exploited. Creating clones without
types is not necessarily easy since there may be information in
the KB that lead certain inference engines to regenerate types
for some clones. E.g., assuming there is an rdfs:domain relation
from the relation type parent to Person, if an object of type Person
is  source  of  a  parent relation  and  this  object  has  its  type
removed, an inference engine may set it again. To avoid such a
case, instead of using rdfs:domain or rdfs:range relations, one may
write inconsistency-implying constraints that are equivalent to
these relations except  that  they are  usable only for  checking
purposes. When SPARQL is used for creating a  clone without
type, as illustrated in Section IV.C, another potential problem is
that the whole KB is duplicated, not just one object. Finally, this
method based on clones without types does not work if there are
inferences that do not exploit types (e.g. via duck typing instead
of inheritance) or if a forward chaining saturation on the KB is
automatically  run  before  the  above  cited  pre-treatment.
However, these last two cases are rare. 

This method relies on a temporary update of KRs before
their checking by an inference engine. Thus, this method does
not rely on a particular KRL, inference engine or tool feature.
I.e., this solution is  KRL independent and  tool independent: it
can be used with any KRL and any tool. Hence, depending on
the domain and application, different inference engines can be
reused to check or evaluate ontology completeness. However,
with some query languages such as current standard versions of
SPARQL, the temporary update cannot be done dynamically: a
KB pre-treatment is  necessary.  This is  a  limitation since KB
servers,  e.g.  SPARQL endpoints,  rarely  allow  their  users  to
modify a KB for checking it. With LDScript [11], an extension
of SPARQL, the temporary update can be done dynamically. As
with  SPARQL,  the  whole  KB  is  duplicated  but  now  it  is
temporary and done every time an object is matched  with the
conclusion of a prescriptive constraint (cf. Section IV.D.2).

C. Representing Constraints Via Relations Between Classes

1) Approaches:
One way to represent and exploit (simple)  rules in a KRL

that has an expressiveness at least equal to RDF or RDFS is to
use an  rdfs:subClassOf relation for representing the implication

between the condition and conclusion of a rule (as in OWL-ER
[12], an intersection between OWL2, Datalog+ and RuleML).
However  then,  either  this  implication  must  not  be  used  for
modus  tollens  or  the  results  must  not  be  detrimental.  The
situation is not much more complex when subclassOf rules are
used as a way to represent constraints. There are three cases.

 If the conclusion is (equivalent to)  owl:Nothing,  i.e. if
the  inconsistency-implying  form is  used,  the  rule  is
semantically a constraint and, depending on the inference
engines, modus tollens may or may not be a danger,

 Otherwise,  if  a  prescriptive constraint  is  represented,
the “Clones Without Types” based method prevents the
results of modus ponens or modus tollens to influence
the checking of constraints (this is where these results
could have been detrimental).

 Otherwise, i.e. if a descriptive constraint is represented,
one must use an inference engine that does not exploit
rules  for  modus  ponens  nor  modus  tollens  when  the
condition  of  the  rule  is  subtype  of  cstr:SubclassOf-
based_constraint_condition or  instance  of
cstr:Type_of_subclassOf-based_constraint_condition.

In  other  words,  using  subclassOf-based  constraints  when
inferences based on subclassOf relations then have to be ignored
is generally not relevant. However, the idea of using classes for
representing  the  conditions  and  conclusion  of  a  constraint
without using variables is interesting. Here are two simple ways.

 The “subclassOf-analogous” way: it consists in relating
the condition class and the conclusion class by a relation
that is not a subclassOf one. To do so, CSTR proposes
the relation types cstr:descriptive_constraint_conclusion and
cstr:prescriptive_constraint_conclusion. 

 The “individual-based constraint” way:  it  consists in
creating a constraint individual and, from it, relations to
express its type (i.e., descriptive vs. prescriptive) and the
classes for its condition and its conclusion. To support
this, CSTR proposes the relation types cstr:condition_class
and cstr:conclusion_class. Here, the classes are not directly
connected by a relation but indirectly connected. A type
could be used instead of an individual but, in the general
case, this would not bring more advantages.

A  disadvantage  of  any  solution  using  relations  from/to
classes when these relations are not subclassOf ones is that the
result requires a KRL with an expressivity at least equal to RDF.
For OWL-based representations, this means interpreting them
with the RDF-Based Semantics, not the OWL2 Direct Semantics.
Reference [4], the companion Web site for this article, proposes
and  categorizes  types  and  requests  to  represent  and  exploit
constraints in the three above ways. Because of their similarities,
in this article mainly only the requests for the last way are given
and the CSTR ontology needs not be further detailed. 

2) Examples of Individual-based Constraints:
In this article, the Turtle notation is used when SPARQL is

not used since SPARQL is an extension of this notation. For
clarity purposes, the names of relation types have a lowercase
initial while other names have an uppercase initial. In SPARQL,
Turtle or other graph-based notations, a statement of the form
“SourceConcept  rel1 DestConcept1a,  DestConcept1b;  rel2
DestConcept2a,  DestConcept2b”  can  for  example  be  read



“SourceConcept has for  rel1 DestConcept1a and DestConcept1b, and
has for rel2 DestConcept2a, and has for rel2 DestConcept2b”.

Here is the positive prescriptive constraint “if x is a Person,
x  must have a parent  in the base of facts (prescriptive-must)”
represented as an individual-based constraint (using CSTR):
[] rdf:type cstr:Prescriptive_constraint;   cstr:condition_class :Person;
    cstr:conclusion_class  [rdf:type owl:Class;  owl:equivalentClass 
                                             [rdf:type owl:Restriction;  owl:onProperty :parent;
                                              owl:someValuesFrom :Person] ].

For the general  descriptive version of this constraint, it is
sufficient  to  replace  “prescriptive”  by  “descriptive”  in  the
previous  representation.  Here  is  a  version  where  parents  are
restricted to be named individuals (i.e. to have a cstr:id relation):
[] rdf:type cstr:Descriptive_constraint;   cstr:condition_class :Person;
    cstr:conclusion_class  [rdf:type owl:Class;   owl:equivalentClass 
                                             [rdf:type owl:Restriction;  owl:onProperty :parent;
                                              owl:someValuesFrom :Named_person] ].

The negative constraint “if x is a Person_without_parent, x
must not have a parent” may be translated into the inconsistency-
implying form “x is a Person_without_parent =>> false”. Here is its
representation as an individual-based constraint:

[] rdf:type  cstr:Descriptive_constraint;  #optional rdf:type relation 
    cstr:condition_class [rdf:type owl:Class;     owl:equivalentClass 
                                        [rdf:type owl:Restriction;    owl:onProperty :parent;
                                         owl:maxCardinality "0"^^xsd:nonNegativeInteger] ];
    cstr:conclusion_class  owl:Nothing.

IV. IMPLEMENTATION IN SPARQL OR SLIGHT EXTENSIONS OF IT

In some extensions of SPARQL, e.g. LDScript [11], the next
commands  (queries  or  update  requests)  can  be  grouped  into
scripts or functions. Variable names begin by “?”. 

A. First Example of KB Pre-treatment: Creating “Identifier 
Relations” for Named Individuals

From each  selected  named individual,  the next  command
adds  a  cstr:id relation  with  destination  the  identifier  of  that
individual. Thus, as explained in Section II.C, queries checking
descriptive constraints also work on those that  include  cstr:id
relations, i.e. that have restrictions to named individuals. Here,
only an individual that has a type with a superclass and that has
other  relations  is  selected  since  in  practice  only  such  an
individual might violate a constraint. To search for individuals,
just looking for each object that is not a relation and that does
not have rdfs:Class as type would be an incomplete strategy and
many conditions would have to be added for filtering out objects
such as i) classes defined via an equivalence to a restriction, and
ii) owl:Thing and some other types from OWL, RDFS or XSD. 
INSERT { ?o cstr:id ?id } WHERE                                 #?o  is an individual that
{ ?o rdf:type ?t . FILTER NOT EXISTS { ?o rdf:type rdfs:Class }    # is typed,
   ?t rdfs:subClassOf ?superClass . FILTER isIRI(?o)       # is named by an IRI,
   FILTER NOT EXISTS { ?o cstr:id ?id }                   # had no cstr:id relation,
   {?o ?r ?o2  FILTER(?r!=rdf:type)} UNION {?o1 ?r ?o}  # has other relations.
   BIND( str(?o) as ?id )  #?id is now the IRI identifying ?o
}

B. Second Example of KB Pre-treatment: Creating “Clones 
Without Types” of Objects For Exploiting These Objects 
Without Inheritance Mechanism

Section III.B  introduced  a  method  for  handling  positive
prescriptive  constraints,  i.e.  for  bypassing  or  avoiding  the

relation lookup mechanism above abbreviated as “inheritance”.
The  next  command  implements  the  KB  pre-treatment
supporting the “clones without types” based method when, as is
the case with SPARQL, i) a particular entailment regime cannot
be changed within a query, and ii) clones cannot be temporarily
created within a query. For the sake of clarity, this command
assumes that the KB does not include user-defined 2nd-order
types.  For  every  object  ?o in  the  KB,  if  this  object  is  an
individual, this command creates  ?o2, a partial copy of  ?o that
has the same relations except for rdf:type relations. This partial
copy  has  for  identifier  the  one  of  ?o but  with  the  suffix
“_cloneWithoutType”. This command also relates  ?o to ?o2 by a
relation of type cstr:cloneWithoutType. 
INSERT {?o cstr:cloneWithoutType ?o2 .   ?o2 ?r ?dest .
                 ?o2 cstr:cloneWithoutTypeOf ?o} WHERE   #?o  is an individual that
{ ?o  rdf:type ?t . FILTER NOT EXISTS { ?o rdf:type rdfs:Class }    # has a type
                      ?t rdfs:subClassOf ?superClass .         # (which has a superclass),
   FILTER NOT EXISTS { ?o  cstr:cloneWithoutType ?c1 }     # is not a clone,
   FILTER NOT EXISTS { ?c2 cstr:cloneWithoutType ?o }    # has not a clone

   { #Case 1: cloning each individual having at least 1 relation different from
      #             rdf:type and owl:sameAs;  "?o2 ?r ?dest" is inserted
      ?o ?r ?dest.  FILTER(?r!=rdf:type)  FILTER(?r!=owl:sameAs)
   }
   UNION #Case 2: cloning each individual not having a relation different from
                 #             rdf:type and owl:sameAs;  "?o2 ?r ?dest" is not inserted
   { ?o ?r1 ?dest   #?o has at least one relation from it 
      FILTER NOT EXISTS 
      {?o ?r ?dest2.  FILTER(?r!=rdf:type)  FILTER(?r!=owl:sameAs) }
   }

   BIND( uri(concat(str(?o),"_cloneWithoutType")) as ?o2 )
}

C. Checking Individual-based Positive Descriptive Constraints

The next query lists every object violating at least one of the
individual-based  positive  descriptive  constraints  –  including
those restricted to named individuals if cstr:id relations have been
added to named individuals. As shown by the code,  such an
object satisfies two conditions. First, this object matches – hence,
has for type – the condition of a constraint ?posConstr that is of
type cstr:Descriptive_constraint. Second, this object does not match
the conclusion of the constraint. This query requires a SPARQL
engine with an entailment regime enabling the matching (alias,
categorization) of an individual with respect to a class expression
and thence the deduction of an  rdf:type relation between them.
In the code of the commands in this Section IV, such deduced
rdf:type relations  are  highlighted  in  bold.  For  inferencing
completeness purposes, such deductions require an entailment
regime able to handle the expressiveness used in the constraints
and the rest of the KB. The code for checking subclassOf-based
or subclassOf-analogous positive descriptive constraints  is similar.
SELECT  ?objectNotMatchingPosConstr   ?posConstr_condition 
                 ?posConstr_conclusion  WHERE
{ ?posConstr  rdf:type  cstr:Descriptive_constraint;
                       cstr:condition_class   ?posConstr_condition;
                       cstr:conclusion_class ?posConstr_conclusion. 
   FILTER (?posConstr_conclusion != owl:Nothing)
   ?objectNotMatchingPosConstr  rdf:type  ?posConstr_condition. 
   FILTER NOT EXISTS  #no objects satisfying the conclusion
   { ?objectNotMatchingPosConstr  rdf:type ?posConstr_conclusion }
}

D. Checking Individual-based Positive Prescriptive Constraints

The next query assumes that the “clones without types” have
been statically created as seen in Subsection B. In the rest of this



Section IV, when a command has some code that has not been
used in a previous command, this code is in italics. 
SELECT  ?objectNotMatchingPosConstr  ?posConstr_condition 
                ?posConstr_conclusion  WHERE
{ ?posConstr  rdf:type  cstr:Prescriptive_constraint;
                       cstr:condition_class  ?posConstr_condition;
                       cstr:conclusion_class  ?posConstr_conclusion.
   FILTER (?posConstr_conclusion  !=  owl:Nothing)
   ?objectNotMatchingPosConstr  rdf:type ?posConstr_condition. 
   ?objectNotMatchingPosConstr cstr:cloneWithoutType ?cloneWithoutType 
   FILTER NOT EXISTS  #no objects with clones satisfying the conclusion 
   { ?cloneWithoutType  rdf:type  ?posConstr_conclusion }
}

Here  is  the  same  query  in  LDScript,  with  an  embedded
query that temporarily creates the above cited partial copies “on
the fly”, thus removing the necessity to modify the KB. 
SELECT  ?objectNotMatchingPosConstr  ?posConstr_condition 
                ?posConstr_conclusion WHERE
{ ?posConstr  rdf:type  cstr:Prescriptive_constraint;
                       cstr:condition_class  ?posConstr_condition;
                       cstr:conclusion_class ?posConstr_conclusion.
   FILTER (?posConstr_conclusion  !=  owl:Nothing)
   ?objectNotMatchingPosConstr  rdf:type ?posConstr_condition. 

   BIND( cstr:getCloneWithoutType(?objectNotMatchingPosConstr) 
              as ?cloneWithoutType )  #the called functions are defined below
   BIND( cstr:copyOfKbIntoTemporaryGraphPlusTheCloneWithoutType
                    (?objectNotMatchingPosConstr,?cloneWithoutType)  as ?g )

   FILTER NOT EXISTS { GRAPH ?g { ?cloneWithoutType 
                                                                     rdf:type ?posConstr_conclusion } }
}

FUNCTION cstr:getCloneWithoutType (?object)
{  uri( concat( str(?object),"_cloneWithoutType") )  }

FUNCTION cstr:copyOfKbIntoTemporaryGraphPlusTheCloneWithoutType
                            (?objectNotMatchingPosConstr, ?cloneWithoutType)
{ LET (?g = CONSTRUCT { ?cloneWithoutType ?r ?dest .  ?x ?r2 ?y } WHERE
                    { VALUES ?cloneWithoutType { UNDEF }
                      ?objectNotMatchingPosConstr ?r ?dest .  FILTER (?r != rdf:type)
                      ?x ?r2 ?y .  FILTER (?x != ?objectNotMatchingPosConstr)
                   } ) 
    {  xt:entailment(?g)  }      #triggers inferences on ?g
}

The same “on the fly” cloning technique can be used for
adding  cstr:id relations  to  named  individuals.  Thus,  this
technique also permits the checking of constraints restricted to
named individuals without having to modify the KB.

E. Checking Individual-based Inconsistency-implying Constraints

The next query lists  every object  violating an individual-
based inconsistency-implying constraint. 
SELECT  ?objectMatchingNegConstr  ?negConstr_condition WHERE
{ ?negConstr  cstr:condition_class  ?negConstr_condition;
                        cstr:conclusion_class  owl:Nothing. 
   ?objectMatchingNegConstr  rdf:type ?negConstr_condition.
}

F. Checking SubclassOf-analogous Constraints

The usable content-independent queries here are identical to
their  counterparts  in the last  three  subsections except  for the
initialization  of  ?posConstr_condition and  ?posConstr_conclusion
since  now  they  are  related  by  a
cstr:descriptive_constraint_conclusion relation  or  a
cstr:prescriptive_constraint_conclusion relation.  E.g.,  here  is  a
query  for  checking  subclassof-analogous  positive  descriptive
constraints. See the line in italics for the new initialization. 

SELECT ?objectNotMatchingPosConstr   ?posConstr_condition 
                ?posConstr_conclusion  WHERE
{ ?posConstr_condition 
           cstr:descriptive_constraint_conclusion  ?posConstr_conclusion.
   FILTER (?posConstr_conclusion  != owl:Nothing)
   ?objectNotMatchingPosConstr  rdf:type ?posConstr_condition. 
   FILTER NOT EXISTS   #no listing of objects satisfying the conclusion
   { ?objectNotMatchingPosConstr rdf:type ?posConstr_conclusion }
}

There are other ways to write the queries. For example: 

 Instead of “FILTER (?posConstr_conclusion != owl:Nothing)”,
one may use “FILTER NOT EXISTS { ?posConstr_conclusion
cstr:prescriptiveConclusion owl:Nothing }”. The first way
has  the  advantage  of  not  being  dependent  on  the
chosen representation for constraint and hence this way
minimizes the difference between the queries. On the
other  hand,  with  this  way,  owl:Nothing cannot  be
replaced by equivalent class expressions (in SPARQL).

 In Subsection D, the line “?objectNotMatchingPosConstr
cstr:cloneWithoutType ?cloneWithoutType” before “FILTER
NOT  EXISTS”  could  be  replaced  by  the  line
“BIND(  uri(  concat(  str(?objectNotMatchingPosConstr),
"_cloneWithoutType"  )  )  as  ?cloneWithoutType  )”  within
the “FILTER NOT EXISTS” block.

G. Checking SubclassOf-based Constraints

The previous queries  do not rely on inference engines  to
take into account the special meaning of CSTR classes. Hence,
as  explained  in  Section III.C.1,  these  queries  cannot be
adapted for checking subclassOf-based constraints representing
positive descriptive constraints. For prescriptive constraints, the
queries  are  the  same  as  their  counterparts  in  the  last  four
subsections  except for the initialization of  ?posConstr_condition
and  ?posConstr_conclusion.  E.g.,  for  a  positive  rescriptive
constraint, this initialization now is: 
?posConstr_condition 
    rdfs:subClassOf  cstr:SubclassOf-based_prescriptive_constraint_condition,
                               ?posConstr_conclusion.

Except as a module for calculating the completeness degree
of a KB, individual-based inconsistency-implying constraints are
useless  if,  when  building  the  KB,  its  consistency  is  already
checked by an inference engine that delivers an error message
when  detecting  that  an  object  is  instance  of  a  subclass  of
owl:Nothing. By  default,  some  Description  Logic  inference
engines such as Corese [11] do not deliver  error messages or
warning messages when detecting such objects. Having to make
inferences on instances of a subclass of  owl:Nothing also makes
Corese behaves abnormally,  e.g.,  not  listing such instances  as
results of the previous described queries when these instances
violate positive constraints. 

H. Checking Binary Relations Instead of Individuals

To list  binary  relations violating  constraints  – instead  of
individuals that have some relations violating constraints – it is
sufficient to replace rdf:type by the “logical implication relation
between  statements”  in  the  previous  content-independent
queries  that  check  positive  constraints.  For  referring  to  such
relations, Tim Berners-Lee uses the type name log:implies [13]
in his Notation3 KRL. However, for this replacement to work,
the used SPARQL engine must exploit an inference engine that
can  deduce  the  existence  of  such  a  relation  when  it  exists



between the matched statements.  Description Logic inference
engines generally do not do so. 

Like  queries  on  individuals,  queries  on  relations  can  use
additional  filters.  E.g.,  for  the  last  query of  Subsection  G to
operate only on negative facts, one may add at the end of its body:
?objectMatchingNegConstr  rdf:type owl:NegativePropertyAssertion.

I. Evaluating the Completeness of a KB

A simple way to define or calculate a completeness degree
for a KB is to divide “the number of relations (in the KB) that
do not violate prescriptive constraints” by “the total number of
relations”.  Another  completeness  degree  may be obtained by
dividing  “the  number  of  individuals  that  do  not  violate
prescriptive constraints” by “the total number of individuals”.
The  next  query  implements  a  variant  of  this  last  definition:
instead of individuals, it exploits “objects that are source of at
least  one relation to another  object”.  Furthermore,  this query
assumes that the constraints are represented as individual-based
constraints. This query can be adapted to implement the above
first definition via the method given in Subsection H. Similarly,
descriptive constraints could also be taken into account. 
SELECT ( ((?nbObjs - ?nbAgainstPosCs - ?nbMatchingNegCs) / ?nbObjs)
                 AS ?completeness )
{ { SELECT ( COUNT(DISTINCT ?o) AS ?nbObjs )
      WHERE { ?o ?r ?o2 } } #any object source of a relation to another object
        # For considering only objects that have a type:
        #           { {?o rdf:type ?t1} UNION {?o cstr:type ?t2}
   }
   { SELECT ( COUNT(DISTINCT ?objectNotMatchingPosConstr) 
                        AS ?nbAgainstPosCs ) WHERE 
      {  ... #the body of a query checking an individual-based positive
              #  prescriptive constraint (see Section IV.D) must be copied here

          #if ?objectNotMatchingPosConstr also violates a negative constraint
          #  it must not be counted here (otherwise it would be counted twice),
          FILTER NOT EXISTS        #  hence this code here
          { ?negConstr  cstr:condition_class  ?negConstr_condition;
                                 cstr:conclusion_class  owl:Nothing.
             ?objectNotMatchingPosConstr rdf:type ?negConstr_condition
          }
      }
   }
   { SELECT ( COUNT(DISTINCT ?objectMatchingNegConstr) 
                        AS ?nbMatchingNegCs) WHERE
      { ?negConstr  cstr:condition_class ?negConstr_condition;
                             cstr:conclusion_class owl:Nothing.
         ?objectMatchingNegConstr rdf:type ?negConstr_condition
      }
   }
}

V. APPLICATIONS, EVALUATION AND COMPARISONS  

A. Examples of Applications or Use Cases

For designing subtype hierarchies,  various research works
such as [14] advise the use of tree structures. However, [4] shows
that  “systematically  using subtype partitions (except  for  non-
natural types)” instead of tree structures has the same benefits
with less disadvantages. It also shows that following this ontology
design pattern (ODP) means using representations equivalent to
relations of type  sub:nonNaturalOrPartitionSubclass (or a subtype
of  it;  the prefix “sub:”  is  an  abbreviation  for  the namespace
http://www.webkb.org/kb/it/SUB).  Using  only OWL2,  [4]  fully
defines this type as well as the other types necessary for stating

a descriptive constraint for checking that the above cited ODP is
systematically  followed.  Here  is  this  constraint;  it  states  that
“if a class C1 has a subclass relation, all subclass relations from
C1 must be of type sub:nonNaturalOrPartitionSubclass”:
[] rdf:type  cstr:Descriptive_constraint;
    cstr:condition_class             # if C is a class that has a subclass ...
          [rdf:type owl:Class;   owl:equivalentClass 
                [rdf:type owl:Restriction;   #"any class that has a subclass"
                 owl:onProperty sub:subclass;  owl:someValuesFrom rdfs:Class] ];
    cstr:conclusion_class      # ... then C has  no subclass relation that is
                                            #         not of type nonNaturalOrPartitionSubclass
           sub:ClassWithNoRel_subclassButNot-nonNaturalOrPartitionSubclass.

This  constraint  can  also  be  represented  in  inconsistency-
implying form, again only using types defined in OWL2:
sub:ClassWithSomeRel_subclassButNot-nonNaturalOrPartitionSubclass
      rdfs:subClassOf  owl:Nothing.

Reference [4] then generalizes this constraint (and the types
it  exploits)  for  checking  all  types  of  transitive  relationships.
More  precisely,  it  proposes  a  SPARQL  INSERT request  that
generates a descriptive constraint for each transitive relation type
having  a  sub:nonNaturalOrPartitionTrRelType relation  indicating
which relation types  must actually be used. E.g., this may be
used to express that, instead of relations of type sub:subclass or
sub:part,  relations  of  type  sub:nonNaturalOrPartitionSubclass or
sub:partitionPart must respectively be used. 

Similarly, [4] also proposes a SPARQL command which, for
each  instance  of  the  type  sub:MandatoryOutRelationType,
generates  prescriptive constraints for checking the systematic
use  of  certain  relation  types.  E.g.,  based  on  the  following
specification  in  the KB, the command generates  a  constraint
indicating that  every dividable object  – i.e.  every instance of
sub:DividableThing –  must  be  the  source  of  a  sub:part relation
except for each object marked as an instance of sub:PartDestLeaf.
sub:part  rdf:type  sub:MandatoryOutRelationType; 
               sub:leafObjectType  sub:PartDestLeaf;
               rdfs:domain  sub:DividableThing.

B. Evaluation and Comparisons

The originality of the approach proposed in this article is
that it enables i) the representation of constraints independently
of  their  exploitation  (this  one  is  represented  within  content-
independent queries), ii) the representation of both descriptive
and prescriptive constraints with any KRL the expressiveness of
which is at least equal to RDFS, and hence iii) the exploitation
of most inference engines, especially via SPARQL queries. 

Since the proposed approach relies on other methods and
tools chosen by each user of the approach, it inherits from their
theoretical  or  practical  improvements.  It  would  thus  not  be
relevant to focus on theoretical aspects of a particular method or
tool in this article. For a general comparison, [12] and [15] list
theoretical points relevant to the proposed approach. Regarding
the  use  of  SPARQL  to  check  constraints,  [10]  shows  that
SPARQL  can  be  used  for  both  expressing  and  validating
integrity constraints based on some partial forms of the Unique
Name Assumption and Closed World Assumption. It also shows
that  this  validation  is  sound  and  complete  when  the
expressiveness used for the constraints and the rest of the KB
are respectively “SROIQ and SRI” or “SROI and SROIQ”. In
the  proposed  approach,  queries  are  used  only  for  validating
constraints, not expressing them, but this is only a generalization
of the approach of [10] which does not change the associated



theoretical results. In [10], the used partial forms of the Unique
Name Assumption and Closed World Assumption are specified
in SPARQL via its operators EXISTS and NOT EXISTS plus the
use of relations of type  owl:sameAs or  owl:differentFrom. These
forms can  similarly  be  expressed  via the commands  seen  in
Section IV  and  the  use  of  relations  of  type  owl:sameAs or
owl:differentFrom in the constraints. 

The  proposed  approach  was  validated  experimentally  by
testing the degree  to  which  a few constraints  – including all
those introduced in this article – were followed in i) the “family
relationship”  focused  sample  ontology  given  by  the  OWL2
Primer W3C document [16] and ii) a few ontologies from the
Linked Data repository LOV. The validation came from finding
the right constraint violations and completeness degrees via the
proposed queries and, when necessary, KB pre-treatments. 

Besides  testing  these  constraints,  queries  and  requests,
another goal of this validation phase was to represent ontology
design patterns or best practices (ODPs) as constraints. ODPs,
e.g. those recommended by the W3C [17] or those of the “ODP
catalog”  [18],  are  i) informal  descriptions  about  how certain
things should be represented, and/or ii) collections of types that
should be reused whenever possible, or iii) lexical or syntactic
rules to follow when importing or exporting formal or informal
knowledge. Descriptive or prescriptive constraints are ways to
represent “must be reused whenever possible” and hence ways
to formalize and implement ODPs related to the second point.
However, during the validation phase, no ODP satisfying the two
following criteria was found: i) the ODP could be implemented
via a constraint,  and ii) the ODP was likely not to lead to a
completeness  degree  close  to  0%  for  a  randomly  chosen
ontology. More generally, no widely followed ODP was found. 

Querying a KB for detecting anti-patterns in it is analogous
to querying it for detecting violations of ODPs in it. However,
like the SPARQL based works of [19],  many works on anti-
pattern detection use queries essentially as a way not to use an
expressive  inference  engine  for  detecting  certain  problems.
Instead, the proposed approach exploits inference engines. With
a sufficiently powerful KRL, any anti-pattern can be expressed
as a negative constraint in inconsistency-implying form. 

The  introduction  of  this  article  summarized  the  strong
distinction  that  exists  between  constraint-based completeness
and represented-world-based completeness, and hence the reason
why it would not be relevant to further compare the proposed
approach with those of tools such as SWIQA and Sieve.

Since the proposed approach is based on a particular use of
RDFS it should be compared to SHACL and SPIN.

 SHACL (SHApes Constraint Language) is a language
ontology  (such  as  OWL2)  proposed  by  the  W3C  to
enable  the definition of  constraints  in  RDF.  SHACL
does not reuse OWL2 to define constraints: it introduces
new terms. It therefore does not support the reuse – for
checking constraints – of inference engines that take into
account  the  special  meaning  of  OWL2  terms.  Thus,
inference engines dedicated to SHACL have to be used
and a new KRL (SHACL) has to be learned. In addition,
SHACL  does  not  distinguish  between  descriptive
constraints  and  prescriptive  ones,  and  thus  handles
prescriptive  constraints  only  very  partially.  E.g.,
handling the condition and conclusion of a prescriptive
constraint generally require different entailment regimes

(as explained in Section II.B) but with SHACL, only one
regime  can  be  specified  for  both  the  condition  and
conclusion. Furthermore, neither LDScript-like extensions
nor SPARQL update requests can be used in SHACL.
Thus,  pre-treatments  of  the  KB  – including  the  one
proposed in  Section IV.B for  prescriptive constraints –
have to be specified via a KRL other than SHACL. 

 SPIN (SParql Inferencing Notation) is a W3C language
ontology that enables the storage of SPARQL queries in
RDF  and,  via  special  relations  such  as  spin:rule and
spin:constraint, the (possibly recursive) calls of SPARQL
queries  or  Javascript  functions  for  adding  nodes  or
values  to  the  KB.  Thus,  SPIN  enables  procedural
attachments  in  a  KB  and  thereby  also  supports the
extension  of  SPARQL.  However,  the  use  of  SPIN
requires a SPIN aware engine. The approach proposed in
this  article  is  KRL independent  (hence  not  based  on
procedural attachments). SPIN could be used for storing
the  SPARQL commands  proposed  in  Section IV  and
Section V.A,  thus  not  only  procedurally  defining  the
types proposed for constraints but also providing a way
to trigger such commands automatically. SPIN can also
be used for checking constraints in other ways that are
less modular (i.e., not using content-independent queries)
or less logic-based (i.e., more procedural), hence in ways
that  offer  less possibilities for  knowledge comparison,
translation,  inferencing,  reuse  or  exploitation.  The
widespread use of such other ways may be a reason why
SHACL has been designed. This article provides a less
restricted  alternative.  The  author  also  works  on  a
knowledge  translation  tool  exploiting  ontology  based
specifications of conversions, including for constraints. 

Some transformation languages or systems exploit KRs. Such
systems are presented in [20] and [21]. Although few of them
explicitly have a function  that detects KR patterns without also
transforming the matched KRs (PatOMat [20] is an exception),
these languages or systems could easily be adapted to have such a
function and hence be used for handling prescriptive constraints.
However, all such systems appear  to use rule-based languages
with more expressiveness than what relations-between-classes
based  constraints  allow.  Typically,  these  languages  allow the
direct and explicit use of variables for relating objects shared by
both the condition and conclusion of a rule. Indeed, using such
languages can simplify the writing of prescriptive constraints.
However,  regarding  what can  be  expressed  and  checked  via
constraints,  this  article  shows  that  i) much  can  be  achieved
simply using relations-between-classes  based  constraints  and
SPARQL1.1,  and ii) the power of the proposed approach then
relies  on  the  power  of  the  inference  engine  used  for  object
matching, rather than on the used language. 

Some  transformation  systems,  like  PatOMat  [20],  issue
SPARQL queries for detecting patterns, based on non-SPARQL
specifications  for  patterns  and  their  transformations.  Some
other transformation systems directly propose an extension of
SPARQL such as STTL [21] to write specifications for patterns
and their transformations. For instance, as shown in [22], STTL
can be combined with LDScript [11] to specify STTL queries
(compiled into SPARQL queries) for detecting patterns and then
transforming the  results.  However,  [22] does not  discuss  the
exploitation of object matching capabilities of inference engines
and it does not distinguish between prescriptive constraints and
non-prescriptive  ones.  To  sum  up,  the  SPARQL commands



introduced  in  this  article  could  also  be  reused  in  these
transformation systems, although in an adapted form. 

VI. CONCLUSION

This goal of this article – supporting constraint checking via
few  predefined  content-independent queries,  in  a  KRL
independent and tool independent way – is original, useful for
modularity as well as knowledge and tool reuse purposes, and
applicable to various research fields. E.g., this support can help
checking the following of ontology design patterns (ODPs), KB
design libraries (e.g., the KADS library) or top-level ontologies
(e.g., DOLCE) in order to validate the quality of a KB or, during
its design, help elicit knowledge from experts. 

The sections II and III answer the first two research questions:
what kinds of constraints need to be considered for evaluating
constraint-based completeness, and how to represent constraints
in any KRL that has an expressiveness at least equal to RDF or
RDFS? Section II and III do so via complementary means.

 First,  by defining the original  notion of “prescriptive
constraint” for checking that some objects are explicitly
given  instead  of  possibly  inferred  as  in  descriptive
constraints (the two constraint kinds thus form a partition).

 Second,  by  providing  i) a  general  method  to  check
prescriptive  constraints,  ii) types  for  distinguishing
different  kinds of  constraints,  and iii) three alternative
structures  for  representing  them via class  expressions.
The use of such expressions is both a way to permit the
reuse  of  most  KRLs  and  a  way  to  reuse  inference
engines by exploiting calculated instanceOf relations

 Third, by showing that both descriptive constraints and
prescriptive  constraints  are i)  necessary  for  evaluating
constraint-based  completeness  via  content-independent
queries, and ii) in a sense, sufficient too for two reasons.
First, descriptive constraints and prescriptive constraints
form a (complete)  partition. Second,  more specialized
distinctions,  if  needed,  can  still be  expressed  by
specializing the given types and using further methods to
take into account these more specialized types. 

Section IV  answers  the  third  research  question:  how  to
implement the general approach with query languages such as
SPARQL or  slight  extensions  of  it?  Section V.A shows how
some  ODPs  can  be  represented  as  descriptive  constraints
exploitable  by  content-independent  queries.  Both  sections
highlight the use of KB pre-treatments to counter-balance certain
lack of expressiveness of some languages, e.g. for implementing
inference bypassing methods or generating constraints. 

Section V.B evaluates the proposed techniques and compares
the approach to other ones. A complement to this work will be to
i) represent ODPs in several research areas (knowledge sharing,
cooperation, security, etc.), using only relations between classes
whenever  possible,  ii) organize  them  by  relations  of
specialization  or  other  kinds,  and  iii) test  these  ODPs  via
LDScript or more expressive languages.
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