
Top-level Ideas about Importing, Translating and Exporting
Knowledge via an Ontology of Representation Languages

 Philippe MARTIN
EA2525 LIM, ESIROI, Uni. of La Réunion,

F-97490 Sainte Clotilde, France, +262 262 48 33 30
+ adjunct researcher of the School of I.C.T.

at Griffith University, Australia
 Philippe.Martin@univ-reunion.fr

Jérémy BÉNARD
GTH, Logicells, 55 rue Labourdonnais,

97400 Saint Denis, France

+262 262 20 93 85
Jeremy.Benard@logicells.com

ABSTRACT
This article introduces KRLO, an ontology of knowledge
representation languages (KRLs), the first to represent KRL abstract
models in a uniform way and the first to represent KRL notations,
i.e., concrete models. Thus, KRLO can help design tools handling
many KRLs and letting their end-users design or adapt KRLs.
KRLO also represent KRL import, translation and export methods
in a declarative way, both via Datalog like rules and pure functions.

CCS Concepts
• Artificial Intelligence➝Knowledge Representation Formalisms
and Methods • Representation languages

Keywords
Knowledge Representation Languages (KRLs); Ontology of
KRLs; Knowledge Integration; Language Technologies.

1. INTRODUCTION
KRLs are languages for representing information into logic-based
forms – knowledge representations (KRs) – within knowledge bases
(KBs). They permit logical inference engines and precision-oriented
information sharing (Linked Data,...). The “Semantic Web” is the
set of representations that use KRLs from the W3C.

Many KRLs exist. A unique one would not be adequate for every
kind of knowledge modelling or exploitation, nor for every person
or tool. E.g., poorly expressive KRLs may have good computational
properties but may lead people not to represent some knowledge or
represent it in biased ways. Many KBs use more expressive KRLs.
Many applications require handling many KRLs. For knowledge
entering, reuse and interoperability purposes, importing, exporting
or translating KRs expressed in different KRLs is needed.

KRLs may have abstract models, e.g., the W3C Resource
Description Framework (RDF), the W3C OWL2 Web Ontology
Language model, and Common Logics (CL), the ANSI standard for
KRLs based on First-Order Logics (FOL). These are abstract data

structure models, such as the models or meta-models of Model
Driven Engineering (MDE). These are not theory models of model-
theoretic semantics. Different abstract models may follow different
logics, e.g., FOL or a description logic. An abstract model may be
formally presented via different notations, i.e., concrete models or
concrete syntaxes, e.g., the CL Interchange Format (CLIF), Turtle or
XML-based notations. From now on, unless preceded by “concrete”,
“model” refers to an abstract model. Models and notations are
themselves KRLs: a KRL is a model and/or a notation. In this article,
an element is a KRL element. A concrete element (CE) is a notation
element, e.g., an infix or prefix representation, as in “3 = 2 + 1” and
“= (3 +(2 1))” or “(= 3 (+ 2 1))”. An abstract element (AE) is an
element of a model. A model is a set of AEs. An AE may be i) a
formula, i.e., something denoting a fact, ii) an abstract term, i.e.,
something denoting a logic object, e.g., a variable or function call, or
iii) a symbol, e.g., one for a quantifier, variable or constant.

Importing KRs is done by a syntactic parser which generates CEs
(e.g., organized into a Concrete Syntax Tree) and/or a semantic
analyser which generates AEs, e.g., organized into an Abstract Syntax
Tree (AST) or an Abstract Semantic Graph (ASG). If these AEs are
not the ones required by the importing tool, a translation to other AEs
occurs. When, as with XML based notations, the input notations are
homo-iconic, i.e., when the structure of the CEs mirrors the structure
of the AEs, the parser may also directly be a semantic analyser.

Exporting KRs expressed in a KRL goes in the reverse direction.

Translating KRs is translating their logic or non-logic objects, i.e,
the KRLs and the KRs content. It may be directly between CEs.
More flexibility and genericity is achieved when AE translation is
involved, i.e., when the import, translation and export processes are
separated. Thus, current research works on translation focus on
translation between AEs. However, they assume that the import and
export processes are done separately, via other techniques.

This article is not about KR content translation. It is about the KRL
related part of importing, translating and exporting KRs. The
advantages of our approach first come from its exploitation of an
ontology of KRLs in each of the last three processes. These
advantages also come from the three originalities of the particular
exploited ontology of KRLs. We named it KRLO. It is the first to
represent KRL abstract models of different families in a uniform
way, e.g., the RDF+OWL models and the CL model. KRLO is also
the first to include an ontology of KRL notations. Finally, KRLO is
the first to include rules and functions specifying default methods
for input, translation and export purposes. Thus, this article is also
about this ontology. We have designed some tools to help exploit it.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SEMANTiCS ’16, September 12-15, 2016, Leipzig, Germany.
Copyright 2010 ACM 1-58113-000-0/00/0010 …$15.00.

DOI: http://dx.doi.org/10.1145/2993318.2993344

Our approach, KRLO and these tools are meant to ease the
implementation of applications handling many KRLs, including
KRLs specified by end-users. These tools are: a generic KRL parser
and semantic analyser, a KRL translation Web server based on it,
and a Web server allowing its users to complete KRLO, for example
with new models and notations. This last server directly reuses our
shared KB server WebKB. Its KB sharing protocols have already
been published [9] and hence will not be presented in this article.
KRLO, these servers, and a very extended version of this article, are
accessible from http://www.webkb.org/KRLs/.

Section 2 gives uses cases for our approach and situates it with
respect to other ones. Section 3 gives some principles for the
specification of KRLs in or via KRLO, and for its default inport,
translation and export rules or functions.

2. COMPARISONS AND USE CASES

2.1 Approaches not based on ontologies
Importing and exporting KRs are often implemented procedurally,
hence in long and error prone manual ways, using parser generators,
such as Lex&Yacc, or via application programming interfaces (API)
such as the Open Knowledge Base Connectivity (OKBC).

Programming environment generators are designed to ease such tasks,
including in knowledge engineering [4]. E.g., Centaur [2] proposed
declarative languages for specifying concrete grammars, abstract
grammars and rules bridging them. Based on them, it could generate
structured editors, parsers, type checkers, interpreters, compilers and
translators. However, being Prolog-like, these declarative languages
are execution oriented, not modelling oriented: they do not ease the
creation and reuse of ontologies with given or calculated subsumption
and exclusion relations [6] [8]. Thus, with them, as with procedural
code, i) small changes in the KRLs to specify often lead to important
changes in the specifications, and ii) the specifications are difficult to
organize into an ontology and hence are not as easy to compare,
automatically analyze and reuse as in an ontology based approach.
Regarding translations, Centaur is also limited since it uses the direct
mapping approach, from one language to another. With Centaur, the
KRL designers provides translation rules between AEs. To translate
between its KRLs, the W3C provides direct mapping rules between
CEs, e.g., i) from the OWL2 Functional-Style Syntax (FSS) into CEs
of the RIF-PS notation for the RIF-BLD model, and ii) from CEs of
FSS into CEs of Triples notation for the RDF model. RIF is the W3C
Rule Interchange Format. RIF-BLD is its Basic Logic Dialect, the one
for definite Horn rules with equality, i.e., for Datalog like KRLs.
RIF-PS is the Presentation Syntax of RIF. The W3C does not propose
translations between AEs. Indeed, i) RIF-BLD is not represented into
an ontology, and ii) CEs of FSS directly represent AEs of the
OWL2 Structural Specification. CL and RIF permit a pivot
approach for KRL translations: they are intermediary expressive
KRLs from and to which other KRLs can be translated. They are
KRL pivots. KRLO can be seen as an “ontology of KRLs” pivot.

Languages created via structure description languages such as XML,
MOF – the Meta-Object Facility of the OMG (Object Management
Group) – or those used in Model Driven Engineering (MDE) are
easy to parse and check via rather generic tools. E.g., XML tools
also work on RDF/XML. However, i) these “rather generic tools”
do not perform logical inferences, and ii) the concrete descriptions
they exploit are often not concise or high-level enough to be used
directly for knowledge entering/display or by tools for knowledge
handling. E.g., which inference engine uses XML objects internally?
Translations from/to other models or notations are still necessary.
Our approach provides an ontology-based concise alternative to the

use of XML as a meta-language for creating KRLs that follow given
KRL ontologies. Thus, any notation can be used for the specifications.
Languages such as Mof2Text, XSLT and CSS are difficult to use for
KR presentation specifications since they are not KRLs or KR query
languages. This is why there have been several works on rule based
and/or style-sheet based transformation languages for RDF. They
specify how RDF AEs may be presented, e.g., in a certain notation,
in bold, in a pop-up window, etc. Examples of such tools are Xenon,
Fresnel, OWL-PL and SPARQL Template. These tools were not
initially meant to use a notation ontology: they initially required the
use of a new style-sheet for each target notation. However, some of
these tools – e.g., SPARQL Template – could exploit KRLO.

Thus, a first kind of use case for an approach based on an ontology
like KRLO is to ease the implementation of tools that parse, check
translate or generate KRs in many KRLs. This can be done by
adding KRL specifications and using or adapting the default
functions or rules of KRLO for KR import, translation and export.

A related second kind of use case is to permit such tools to enable
their users – i.e., each application developer or each end-user – to
extend or adapt KRLs and the default import, translation or export
methods in advanced ways. With a procedural implementation or the
use of a fixed (meta-)model for KRLs, this is hardly possible: only
macros or informal annotations can be proposed. Without an
ontology of KRL model and notation, this is difficult. In many
cases, implementing or extending a KRL parser, translator, displayer
or navigator is not an option or a cumbersome one. Yet, it is also
often interesting to add syntactic sugar or new structures to a
particular notation, to gain conciseness, ease readability or lift some
expressiveness restrictions. Nowadays, when people want to
represent knowledge that cannot be fully expressed with the KRLs
they need or wish to use, they represent the knowledge in incomplete
or ad hoc and biased ways. Instead, with our approach they can
extend their KRLs. Conversely, our approach also provides a way to
exploit KBs even if they include syntactically or semantically
incorrect KRs, as long as the kinds of errors are systematic. Indeed,
with our approach, the used KRL model, notation or parser can be
adapted to interpret some systematic incorrect usages in special ways.
This is useful: in the study of [1], only 37.6% of Datahub resources
for Linked Data proved fully machine-processable. Similarly, KRLO
could be extended for generating Semantic Web wrappers, i.e., tools
parsing structures in certain resources to extract KRs.

2.2 Approaches based on ontologies
Except for KRLO, ontologies about KRLs are only about the AEs
of some particular models. They were only meant for translation
purposes. [7] showed that translation approaches (mapping,
pivot, ...) are generalized when an ontology of KRL models is used,
one where AEs – and then models – are related by certain
translation relations. Each of these relations has an associated
definition for performing the translation. Each relation also represents
translation properties, i.e., whether or not the translation preserves
the model-theoretic semantics, interpretations, and logic
consequences of the translated AEs. Thus, given AEs to translate, a
tool exploiting this approach may allow its users to choose different
target models according to what they want the translations to
preserve. As a proof-of-concept, [7] used XSLT to implement about
40 translation relations between AEs from 25 description logics.
The LATIN (Logic Atlas and Integrator) Project (2009-2012) [3]
went further by representing such translation relations between many
different logics. Via HETS (Heterogeneous Tool Set), LATIN exploits
various KRLs, including KRLs of HOL (Higher Order Logic)
expressiveness, e.g., Isabelle and HasCASL. Via DOL (Distributed

Ontology modeling Language) [5], the OMG proposes a standard
KRL for i) specifying particular kinds of translation relations
between KRL models and ii) using several KRLs in a same DOL
document. DOL is also implemented via HETS and the authors of
DOL see some results of LATIN as avenues for future extensions
[5]. Ontohub is a DOL based repository which includes KRL
models and translation relations between them. DOL and HETS do
not specify notations. They rely on external parsers and exporters.

None of the above cited works specifies or exploits an ontology
representing AEs of different KRL models in a uniform and organized
way. KRLO does so by linking the AEs with as many generalization
relations and partOf relations as possible and, for these last ones,
using the operator-arguments schema detailed in Section 3. Thus,
KRLO can be seen or used as a way to align and integrate other KRL
translation related ontologies. In KRLO, when direct relations cannot
be used for defining AEs, CEs or inport/translation/export methods,
rules and pure functions are used. Both are used in order to increase
reusability. The functions use the representations as data structures.
So far, in KRLO, the maximum required expressiveness is OWL2-
DL plus rules allowing existential quantifiers in their heads. Since the
structures in KRLO are akin to reified statements, the expressiveness
required for their translation is unrelated to the one needed to express
the content of the KRs. Translations represented via rules in KRLO
are semantic preserving structure translation rules. For KR content
translations, KRLO users have to exploit complementary ontologies
and, possibly, more powerful inference engines. In the future,
KRLO will be added to Ontohub and made exploitable via HETS.

None of the above cited works specifies or exploits an ontology of
notations. KRLO does. This permits the import, translation and
export tasks to exploit an ontology of KRLs and the same one. Thus,
our approach extends the one presented in [7] and may be seen a
pivot approach based on such an ontology of KRLs instead of a KRL.

Besides KRLO and Ontohub, there is another ontology relating
KRL models not belonging to a same family: ODM 1.1, an OMG
specification of 2014. It uses UML for representing four KRL
models: RDF, OWL, CL and Topic Maps. Between AEs of these
models, it also sets some semantic relations such as generalization or
equivalence relations. Finally, it gives QVT rules for direct mappings
between AEs of different models. Since direct mappings are used
instead of few primitives for defining and relating the various AEs,
the heterogeneity of the various KRL models is not eliminated. This
heterogeneity makes the AEs difficult to compare or exploit in a
uniform way. Finally, QVT rules are not directly usable by inference
engines and translating them into KRLs may not be easy. We are not
aware of works using ODM for KR import, translation or export
purposes. Similarly, we have not found ontologies for notations,
even for RDF notations. Hence, apart from our KRLO based
translator, it seems there is no other translator based on an ontology
for a KRL model and a notation. There are translators between
notations for the RDF model, e.g., RDF-translator, EasyRDF and
RDF2RDF. Their Web interfaces or APIs propose no way to
parameter their knowledge import, translation and export processes.

To sum up, regarding KRL translation, a kind of use case for our
approach is an increased simplification of the implementation of
this process. A related kind of use case is to enable end users to
parameter, extend or adapt KRL translations. Adding a new KRL
specification to KRLO – e.g., via its Web servers – may be sufficient
to specify the structural translation of this KRL to other represented
KRLs: no transformation rule or function may be required. Finally,
as detailed by the authors of DOL, LATIN and [7], it is easier to
implement a tool generating proofs for the properties of its
translations if the tool exploits rules or relations in an ontology.

3. DESIGN PRINCIPLES OF KRLO
The top-level of KRLO, i.e., the part reused and specialized by
specifications for particular KRLs, currently includes over 900 AE
types. The structure of each KRL element is represented in a
uniform way, like the structure of a function, i.e, as an operator with
an optional set of arguments and a result. Thus, in KRLO, the six
most important primitive relation types for relating AEs are named
has_operator, has_argument, has_arguments, has_result, has_parts
and has_part. The first two are subtypes of the last since the operator
and arguments of an AE are also its parts. The structure of a relation is
defined to include as operator a relation type, as arguments a list of
AEs and as result a boolean. E.g., the structure for the relation
“has_part (USA Iowa)” has as operator has_part, as arguments USA
and Iowa, and as result True. The structure of a quantification is
defined to include as operator a quantifier, some arguments and as
result a boolean. A function is defined to have a type as operator,
some arguments and a result. A variable or an identifier is (partially)
defined to have as operator a name, as arguments an empty list of
AEs and as result an AE of a certain type. Thus, in KRLO, an AE
operator may be a function/relation/collection type, a quantifier or a
value. Being an operator is only a structural role that different kinds of
elements may have. When the AE is a formula, representing its
structure is not representing its meaning directly. In RDF, this is
illustrated by the difference between a statement and its reification.

A CE is the presentation of an AE in a given notation. Since the
structure of each AE is known, the presentation of CEs for a given
AE can be specified by composition of the presentation of CEs for
parts of this given AE. For textual notations, this composition is
often a simple ordering – e.g., in a prefix, infix or postfix way –
plus some syntactic sugar to delimit some parts. Thus, like the
structure of an AE, the structure of a CE can be represented like the
structure of a function. This led us to note that, like models,
notations can be represented in a uniform way using few primitives.
This also led us to note that a generic analyser could be built for all
KRLs that can have a deterministic context-free grammar, e.g., an
LL(1) or LALR(1) grammar. Furthermore, this analyser would be
efficient since these grammars that can be efficiently parsed. As an
example for the underlying idea, consider an AE composed of an
operator “o” with two arguments “x” and “y”. If single parenthesis
are mandatory delimiters and if single space characters are the only
usable separators, this AE has only the next five possible CEs in all
the notations we know: “o (x y)”, the prefix functional form, as in
RIF-PS; “(o x y)”, the prefix list-like form, as in KIF; “(x o y)”, the
infix form, as in Turtle and some RIF-PS formulas; “(x y o)”, the
postfix list-like form; “(x y) o”, the postfix functional form. Five
rules of an LL(1) or LALR(1) grammar can be used for specifying
these five forms and they can be generalized for any number of
arguments, not just two. Furthermore, if – as with the Lex&Yacc
parser generators – the grammar can be divided into a lexical
grammar and a non-lexical grammar, the separators can be made
generic via terminal symbols with names such as
Placeholder_for_begin-mark_of_arguments_of_a_prefix-function-
like_element. Based on these ideas and using Flex&Bison, variants of
Lex&Yacc, we created a generic analyser for any KRL that can have
an LALR(1) grammar. This grammar for this KRL does not have to
be found since it is generalized by the generic grammar that our
analyser uses. Given a CE and its KRL, based on the specifications
for the notation and model of this KRL in KRLO, this analyser
directly generates an abstract semantic graph. Its methods are the
default input methods of KRLO. They are represented via functions
and, soon, rules too. From these functions, Javascript functions are
generated to implement the analyser in Javascript. This analyser is,

as most generated parsers, based on a finite state machine, not on
top-down direct interpretation rules, as often done in Prolog [10].

The top-level of the ontology of notations of KRLO does not
categorize all possible prefix/infix/postfix notation forms for an AE.
Instead, it contains primitive relations permitting to describe them
and, for usability purposes, functions to combine them. They permit
to specify i) the structure of CEs for a given type of AE in a given
type of notation, and ii) the order and roles of these CEs: operator,
argument or separator. Thanks to these roles, relevant grammar rules
can be selected to be executed, e.g., rules belonging to the grammar
of our generic analyser. For exporting into textual CEs, only the
order of the terms in this list is important. The spacing between
CEs, e.g., for indentation purposes, is similarly defined.

In KRLO, each AE has one and only one rc_spec relation for a
given type of notation, i.e., one CE specification. This relation may be
inherited or overriding an inherited one. The “only one” part is
ensured by our knowledge server which prevents the entering of
ambiguities when it detects them. The other “one” part comes from
the default presentation specifications of KRLO, e.g., for the spacing
between CEs. Thus, for a given AE and notation, all possible CEs are
unambiguously described. This is why the import and export methods
of KRLO can be represented not only as rules but also as functions
or as functional relations for the KRLs that do not handle functions.

Given an AE and specifications related to a target KRL, the default
export method specified in KRLO generates a CE for this AE by
i) recursively navigating the parts of that AE, ii) translating each of
these parts when the target model requires it and when, to do so, the
method can find relations, rules or functions that satisfy the
translation properties selected by the user (as noted in Section 2.2),
iii) for each translated or original part, applying the CE specification
associated to this part in the target KRL specification, and
iv) concatenating the resulting CEs. The translation and export
processes are complete with respect to what is expressed by these
relations, rules or functions since there is one rc_spec relation for
each AE in a given type of notation. Each user can control the
translation and export processes. Indeed, she can select not only the
translation properties but also the target notation and the target model
or the target AEs. She can also extend KRLO or adapt her copy of
KRLO. In the general case, knowledge export and translation are
arbitrary in the sense that knowledge can be translated and exported
in various ways. However, this is not the case with KRLO in the
sense that particular ways can be represented and then selected by
the user. The default presentation choices represented in KRLO
permit the user not to do this work if she does not want to.
However, KRLO does not represent all information necessary for
any export or translation to be semantically complete with respect to
any application. E.g., KRLO does not yet represent any inference
strategy and hence the order of statements generated by translation
and export processes may not be adequate for a particular inference
strategy. As an example, rules may be generated in an order that
lead to infinite loops if they are used with a Prolog inference engine.

For KRL translation, in addition to equivalence or implication
relations between types of AE, KRLO currently proposes some
equivalences or implications via functions and rules. These rules
and functions are for translations between structures, e.g., between
i) non-binary relations and binary ones, ii) different structures for
meta-statements (formulas about formulas), and iii) some kinds of
definitions and some uses of universal quantification with
implication or equivalence relations. These structural translations
are simple: they can generally be expressed via RIF-BLD rules and
do not require the complex strategies of general term/graph rewriting

techniques. Backward chaining is sufficient to exploit them. Thus,
KRLO does not specify a default translation method for combining
these translation rules or functions.

For translations not yet supported by KRLO, the user has to import
complementary ontologies. KRLO does not define types which are
not logic-related, e.g., types for physical quantities or dimensions.
Thus, if a KRL notation has some syntactic sugar for such types, the
notation specification has to reuse types that are not defined in
KRLO but in other ontologies. Using them for translation may
require special translation methods.

4. CONCLUSION
This article showed the interest of exploiting an homogeneous
ontology of KRL models and notations when implementing tools
importing, translating and exporting knowledge in many KRLs. It
also showed how we created such an ontology, which main ideas
we used, and which first tools we designed to help its exploitation.
A related underlying contribution is the resulting ontology, KRLO,
which i) represents and relates several models and notations into a
unified framework, ii) declaratively specifies some import and
export methods, and iii) can be extended with additional
specifications by Web users. The approach also provides an
ontology-based concise alternative to the use of XML as a meta-
language for creating KRLs.

5. REFERENCES
[1] Beek, W., Groth, P., Schlobach, S. and Hoekstra, R. 2014. A

web observatory for the machine processability of structured
data on the web. In Proceedings of the 2014 ACM conference
on Web science, 249-250.

[2] Borras, P., Clément, D., Despeyrouz, Th., Incerpi, J., Kahn, G.,
Lang, B. and Pascual, V. 1988. CENTAUR: the system. In
Proceedings of SIGSOFT'88, 3rd Annual Symposium on
Software Development Environments (Boston, USA), 14-24.

[3] Codescu, M., Horozal, F., Kohlhase, M. , Mossakowski, T. and
Rabe, F. 2011. Project Abstract: Logic Atlas and Integrator
(LATIN). In Intelligent Computer Mathematics 2011, LNCS
6824, 287-289. See also http://trac.omdoc.org/LATIN/

[4] Corby, O. and Dieng, R. 1996. Cokace: a Centaur-based
environment for CommonKADS Conceptual Modeling
Language. In Proceedings of ECAI 1996 (Hungary), 418-422.

[5] DOL 2016. The Distributed Ontology, Modeling, and
Specification Language (DOL). OMG document.
http://www.omg.org/spec/DOL/

[6] Dromey G.R. (2006). Scaleable Formalization of Imperfect
Knowledge. Proceedings of AWCVS-2006, 1st Asian Working
Conference on Verified Software, Macao SAR, China.

[7] Euzenat, J. and Stuckenschmidt, H. 2003. The 'family of
languages' approach to semantic interoperability. Knowledge
transformation for the semantic web (eds: Borys Omelayenko,
Michel Klein), IOS press, 49-63.

[8] Guizzardi G., Lopes M., Baião F., Falbo R. On the importance
of truly ontological representation languages. IJISMD 2010.

[9] Martin, Ph. 2011. Collaborative knowledge sharing and
editing. International Journal on Computer Science and
Information Systems, Vol. 6, Issue 1, 14-29.

[10] Wielemaker, J., Schreiber, G. and Wielinga, B., 2003. Prolog-
Based Infrastructure for RDF: Scalability and Performance. In
Proceedings of ISWC 2003, LNCS 2870, 644-658.

