
Embedding Knowledge in Web Documents
Philippe Martin and Peter Eklund

Griffith University, School of Information Technology, PMB50 Gold Coast MC, QLD 9726 Australia
Tel: +61 7 5594 8271; Fax: +61 7 5594 8066; Email:fphilippe.martin,p.eklundg@gu.edu.au

Abstract
The paper argues for the use of general and intuitive knowledge representation languages (and simpler notational variants, e.g. subsets of
natural languages) for indexing the content of Web documents and representing knowledge within them. We believe that these languages
have advantages over metadata languages based on the Extensible Mark-up Language (XML). Indeed, the retrieval of precise information is
better supported by languages designed to represent semantic content and support logical inference, and the readability of such a language
eases its exploitation, presentation and direct insertionwithin a document (thus also avoiding information duplication). We advocate the use
of Conceptual Graphs and simpler notational variants that enhance knowledge readability. To further ease the representation process, we
propose techniques allowing users to leave some knowledge terms undeclared. We also show how lexical, structural and knowledge-based
techniques may be combined to retrieve or generate knowledge or Web documents. To support and guide the knowledge modeling approach,
we present a top-level ontology of 400 concept and relation types. We have implemented these features in a Web-accessible tool named
WebKB (http://meganesia.int.gu.edu.au/˜phmartin/WebKB/), and show examples to illustrate them.

Keywords. Knowledge Modeling, Precision-oriented Information Retrieval, Knowledge-based Indexation and Annotation,
Data and Metadata Management, Ontology.

Table of contents
1 Introduction
2 Architecture
3 Language features

3.1 Lexical and Structural Query Languages
3.2 Knowledge Representation

3.2.1 Knowledge Representation Languages vs XML-based Metadata Languages
3.2.2 More Intuitive Notations for Restricted Knowledge Representation Cases
3.2.3 Allowing Undeclared Terms in Knowledge Statements

3.3 Indexing any Document Element using Knowledge
3.3.1 General Cases
3.3.2 A Simple Example

3.4 Knowledge Query Commands
3.5 Knowledge Generation Commands
3.6 Embedding Commands in Documents

4 A top-level ontology
5 Conclusion

1 Introduction
Document indexation techniques, such as those used in large-scale Web search engines, support the retrieval of documents that
might contain some parts related to the query. Alternative approaches involve natural language parsing techniques to extract a
precise semantic network from the content of documents. Such a network enables an inference engine to give a precise answer
to a query. However, despite substantial progress, e.g. DR-LINK1, CYC2, Web documents cannot in general be “understood”
using natural language processing techniques.

Precision-oriented information retrieval is performed by Web robots such as Harvest3, W3QS4, WebSQL5 and WebLog6. Such
tools perform string-matching searches (e.g. with regular expressions) and structure-matching searches (e.g. on tags, link names
and link paths) in documents. These tools may compose the retrieved information to answer queries and generate documents.
However, for precise information to be retrieved in this way, the documents (or Web-accessible databases) must be rigorously
structured and this structure known to the users making the queries.1http://www.textwise.com/drlink.html2http://www.cyc.com/applications.html#nl3http://harvest.transarc.com/4http://www.cs.technion.ac.il/˜konop/w3qs.html5http://www.cs.toronto.edu/˜websql/6http://www.cs.concordia.ca/˜special/bibdb/weblog.html

One way to improve information retrieval precision and ease of representation is to use a knowledge representation language.
Many “metadata” languages are currently being developed to allow people to index Web information resources by knowledge
representations (logical statements) and subsequently store them in Web documents. Most of these languages are built above
XML 7, e.g. RDF8 and OML9.
The choice of XML as an underlying format ensures that standard XML tools will be usable to exchange and parse these
metadata languages. However, like XML, metadata languages built above it arealso verbose and therefore difficult to use
without specialized editors (this point will be illustrated in Figure 3). Such editors do not eliminate the need for people to use
a language for representing knowledge (except in application-dependent editors that simply allow predefined “frames” to be
filled). Consequently, as noted by the authors of Ontobroker10 [1], with XML-based languages information has to be written
in two versions, one for machines and another for humans. Additionally, standard XML tools are of little help in managing
these languages since specialized editors, analyzers and inference engines are required. To reduce information redundancy,
Ontobroker provides a notation for embedding attribute-value pairs within an HTML hyperlink tag. These tags may be used by
the document’s author to delimit an element. In this way, each element may be implicitly referenced in the knowledge statement
within the tag enclosing the element. When a final version of RDF is recommended by the Word Wide Web Consortium11,
a wrapper can be added to Ontobroker for automatically generating RDF definitions from Ontobroker metadata, thus making
them accessible to a broader community.

We favor the Ontobroker approach. However, we believe the Ontobroker metadata language has the following drawbacks that
prevent it being used for precise knowledge modeling or rapid information indexing: (i) it is general but basic and hard to read
(it is a notation for embedding attribute-value pairs within HTML hyperlink tags), and (ii) the terms used in the knowledge
statements cannot be defined in the same document. Furthermore, the Ontobroker metadata language does not complement
HTML with better indexation features.

Our solution for easing the representation of knowledge is first to proposea set of intuitive, complementary and combinable
languages or commandsthat allow users to represent and index any Web-accessible information at thelevels of precision
they desire. More precisely, this implies an expressive formal model (the user should not be restricted by the language) and
various notations for it. Any formalism equivalent to full first-order logic allowing the use of contexts, such as KIF12, would
be appropriate. For search or reasoning purposes, the users’ knowledge statements may be translated into less expressive but
more efficient languages, e.g. Loom13. For our knowledge annotation and exploitation tool, WebKB, we have chosen the
Conceptual Graphs (CGs)14 formalism, first because it has a graphical notation and a linear notation, both concise and easily
comprehensible, and second because we can reuse CG inference engines that exploitsubsumption relations defined between
formal terms for calculating specialization relations between graphs — and therefore between a query graph and facts in a
knowledge base. Hence, queries may also be made at various levels of granularity. We have added operators to these CG
engines, e.g. a maximal join on given CGs, and complemented the CG linear notation by other less expressive but more
readable linear notations using a formalized English, HTML structures and indented text.

Even with such languages usable with any text editor, representing knowledge may still be considered too tedious by the user
if all the terms used in the knowledge statements must be declared and organized. In WebKB,the user may choose not to
declare all the terms s/he uses. The use of semi-formal statements is at the expense of knowledge precision and accessibility
but allows rapid expression and incremental refinement of knowledge. When forewarned by a special command (“no decl”),
WebKB accepts CGs that include undeclared terms. We show below how this imprecision may partially be compensated by
exploiting a natural language ontology and constraints in the application ontology.

Top-level ontologiesprovide constraints and building blocks for knowledge representation. For instance, the Knowledge Sharing
Effort public library15 provides many precise ontologies. WebKB proposes a more terminologically oriented ontology to ease
rapid and simple knowledge representation. It includes 400 concept and relation types, and was created by merging other top-
level ontologies used in knowledge acquisition, knowledge representation, and cooperation-oriented hypertext tools. For the
sake of brevity, we do not detail this ontology in this paper but provide some of its components and uses. It is accessible and
browsable at the WebKB site, and more details on its construction may be found in [2] and [3].

The lexical, structural and knowledge-based approaches arecomplementaryfor information retrieval and exploitation. In
WebKB, these approaches arecombinedin the following way: lexical and structural query commands working onWeb-7http://www.w3.org/XML/8http://www.w3.org/RDF/9http://wave.eecs.wsu.edu/CKRMI/OML.html10http://www.aifb.uni-karlsruhe.de/WBS/broker/11http://www.w3.org/12http://logic.stanford.edu/kif/kif.html13http://www.isi.edu/isd/LOOM/LOOM-HOME.html14http://concept.cs.uah.edu/CG/Standard.html15http://www-ksl.stanford.edu/knowledge-sharing/

accessible documents are proposed and may be combined with the knowledge query/assertion commands via a simple Unix
shell-like script language. An important feature is that all these commands may beembedded within documents. This permits
command scripts and eases document generation. For instance, a WebKB query command or script may be associated with an
HTML hyperlink, thus enabling the generation of context-dependent documents when the link is activated.

Finally, a genuine sharing of knowledge implies ashared repository(virtual repository if it is composed of distributed systems)
where procedures control the integration of knowledge from the various users. We have not yet implemented this shared
repository in WebKB but the expected procedures and work in progress are reported at the WebKB site.

We first present architectural choices for tools like WebKB, then detail itslanguage featuresand introduce theontologyit
proposes.

2 Architecture
Our survey of Web-based tools for Knowledge Acquisition (KA), Information Retrieval (IR) and Cooperation reveals that these
tools face similar design issues that lead to the implementation of a subset of the same basic elements. Figure 1 shows these
basic elements.

Figure 1: Generalized architecture elements of Web-based IR/KA/Groupware systems.

Some architectural choices have to be made for KA/IR/Cooperation Web-basedtools (and thus also for WebKB which is aimed
to support these three tasks). More precisely, these tools may (1) integrate distributed systems, (2) search and exploit the content
of distributed information sources (plain files or databases), or (3) allow users to store and exploit information in a repository.

In the first case, tools such as AlephWeb16, Hermes17, Infomaster18 and TSIMMIS19 unify heterogeneous distributed infor-
mation systems and use a “mediator” that translates user queries into sub-queries for the different systems and then integrates
sub-answers. The mediator exploits “wrappers” and content descriptionsof information sources to perform the conversion
between languages or protocols (cf. Figure 1). The information sources must conform to a predefined structure to allow a
wrapper to extract structured information.

In the second case, structured information, metadata or knowledge statements are searched in different Web-accessible files
or databases, and possibly translated into the same language. A search may be initiated and directed by a user query (as in
WebSQL or WebLog), or done for collecting and caching data in order to efficiently respond to queries later (as in Ontobroker).
Thus, the search engine and the storage system can be integrated, as in a database management system.16http://www.pangea.org/alephweb.aleph/paper.html17http://www.cs.umd.edu/projects/hermes/18http://infomaster.stanford.edu/infomaster-info.html19http://www-db.stanford.edu/tsimmis/tsimmis.html

In the third case, a repository stores information. Controls may be initiated when users enter information, and relationships
between information from different users automatically created. Integrating distributed systems may be seen as creating a
virtual repository, and each distributed system may itself be a repository, as for example in AlephWeb.

According to these distinctions, WebKB has three components:� a text/knowledgesearch enginethat cangeneratenew knowledge and documents by assembling operators;� text/knowledgequery interfaceswritten in HTML and Javascript (knowledge editors are also proposed for helping users
build knowledge assertions or queries); and� ontologies stored in Web-accessible documents.

At present, the WebKB processor can search information or knowledge in Web-accessible documents but does not support the
construction and access of a knowledge repository by multiple users. This processor is a C/C++ program that is Web-accessible
via the Common Gateway Interface (CGI)20. It exploits two CG workbenches, CoGITo21 and Peirce22 that are both memory
bound. To handle a large repository, the WebKB processor needs to be extended to exploit a deductive database. The usable
document/knowledge assertion/query/management languages will not changebut will operate on the repository in addition to
Web documents. The ontologies currently exploited by WebKB, plus thenatural language ontology WordNet23 (90,000 concept
types connected to 120,000 words) will initialize the repository.

The WebKB processor will remain Web-accessible by a CGI interface. In this way, it is accessible both from simple form-based
interfaces (such as the WebKB user interfaces — easily adaptable by users for theirparticular needs) or by other programs.
More program-oriented interfaces, such as Corba24 or OKBC25 may be added in the future. OKBC would enable knowledge
exchange with other knowledge representation systems (KRSs), e.g. Loom or Ontolingua, and enable the repository to be
graphically browsed and edited by the Generic Knowledge Base Editor26. Finally, wrappers for languages such as RDF or KIF
might also be added as standards and interfaces to them emerge.

Figure 2 shows the WebKB menu and the ”Knowledge-based Information Retrieval/Handling Tool”.

3 Language features
We now give some examples of the language features we propose and have implemented in WebKB. More examples and the
grammar of these languages may be found at the WebKB site. The commands of these languages may be combined with
commands of simple Unix shell-like scripting language, e.g. if, for,pipe and set.

3.1 Lexical and Structural Query Languages
Because WebKB proposes knowledge representation and query commands, and a script language, we have not felt the need
to give it a lexical and structural query language as precise as those of Harvest, WebSQL and WebLog. Instead, we have
implemented some Unix-like text processing commands for exploiting Web-accessible documents or databases and generating
other documents, e.g. cat, grep, fgrep, diff, head, tail, awk, cd, pwd, wc and echo. We added the hyperlink path exploring
command “accessibleDocFrom”. This command lists the documents directly and indirectly accessible from given documents
within a maximal number of hyperlinks. For example, the following command lists the HTML documents accessible from
http://www.foo.bar/foo.html (maximum 2 levels) and that includethe string “nowledge” in their HTML source code.

accessibleDocFrom -maxlevel 2 -HTMLonly http://www.foo.bar/foo.html | grep nowledge

20http://www.w3.org/CGI/21http://seine.inapg.inra.fr/˜ollivier/Publis.html22http://www.cs.rmit.edu.au/˜ged/publications.html23http://www.cogsci.princeton.edu/˜wn/24http://www.whatis.com:80/corba.htm25http://www.ai.sri.com/˜okbc/26http://www.ai.sri.com/˜gkb/

Figure 2: The WebKB tool menu and knowledge-based Information Retrieval/Handling Tool.The example query shows how
a document containing CGs (indexing images) is loaded into the WebKBprocessor and then how the command ”spec” (which
looks for specializations of a CG) can be used to retrieve CGs and the images they index. According to the value selected in the
”kinds of results” option (cf. top right of the figure), the images,but not the knowledge statements, will be presented. A similar
query and its results is shown in the figures 6 and 8.

3.2 Knowledge Representation

3.2.1 Knowledge Representation Languages vs XML-based Metadata Languages
XML is intended as a machine-readable rather than human-readable language because it is mainly meant to be generated and
read by machines not people. XML-based metadata languages inherit this poor readability and most of them (e.g. RDF) do
not specify how to represent logical operators or quantifiers. As an alternative, WebKB proposes to use expressive but intuitive
knowledge representation languages to represent (or index) informationin documents and mix knowledge statements with other
textual elements (e.g. sentences, sections or references to images). To allow this, the knowledge (or commands exploiting it)
must be enclosed whithin the HTML tags “<KR>” and “</KR>” or the strings “$(” and “)$”. The knowledge representation lan-
guage used in each chunk must be specified at its beginning, e.g.: “<KR language="CG">”. (Lexical/structural/procedural
commands may be used whichever language is specified). Thus, there is no need to separate knowledge from its documentation
nor duplicate it in an external knowledge base.

At present,WebKB only exploits the CG formalism. However, the exploitation of wrappers (e.g. KIF to CGs) or other inference
engines would allow WebKB to accept other knowledge representation languages.To compare the alternatives, Figure 3
shows how a simple sentence may currently be represented in WebKB, how it could be represented in KIF, and what its
RDF representation is. The sentence is: “John believes that Mary has a cousinwho has the same age as her”.

<KR language="CG">
load "http://www.bar.com/topLevelOntology"; //Import this ontology
Age < Property; //Declare Age as a subtype of Property
Cousin(Person,Person) {Relation type Cousin};

[Person:"John"]<-(Believer)<-[Descr: [Person:"Mary"]- { (Chrc)->[Age: *a];
(Cousin)->[Person]->(Chrc)->[*a];

}];
</KR>

<KR language="KIF">
load "http://www.bar.com/topLevelOntology"; //Import this ontology
(Define-Ontology Example (Slot-Constraint-Sugar topLevelOntology))
(Define-Class Age (?X) :Def (Property ?X))
(Define-Relation Cousin(?s ?p) :Def (And (Person ?s) (Person ?p)))

(Exists ((?j Person))
(And (Name ?j John) (Believer ?j ’(Exists ((?m Person) (?p Person) (?a Age))

(And (Name ?m Mary) (Chrc ?m ?a)
(Cousin ?m ?p) (Chrc ?p ?a)

))
))) </KR>

<!-- RDF notation (with allowed abbreviations); this file is named "example" -->
<RDF xmlns:rdf="http://www.w3.org/TR/WD-rdf-syntax#"

xmlns:t="http://www.bar.com/topLevelOntology">
<Class ID="Age"><subClassOf resource="t#Property"/></Class>
<PropertyType ID="Cousin"><comment>Relation type Chrc (Characteristic)</comment>

<range resource="t#Person"/>
<domain resource="t#Person"/></PropertyType> </RDF>

<RDF xmlns="http://www.w3.org/TR/WD-rdf-syntax#" xmlns:x="http://www.bar.com/example"
xmlns:t="http://www.bar.com/topLevelOntology">

<Description aboutEach="#Statement_01"> <t#Believer>John</t#Believer> </Description>

<t#Person bagID="Statement_01"><t#Name>Mary</t#Name>
<x#Chrc><x#Age ID="age"></x#Age></x#Chrc>
<x#Cousin><t#Person><x#Chrc resource="#age"/></t#Cousin>

</t#Person> </RDF>

Figure 3: Comparing knowledge representation with KIF, CGs and RDF.

The CG representation (top) seems simpler than the others. The semantic network structure of CGs (i.e. concepts connected by
relations) has three advantages: (i) it restricts the formulation of knowledge without compromising expressivity and this tends to
ease knowledge comparison from a computational viewpoint; (ii) it encourages the users to express relations between concepts
(as opposed, for instances, to languages where ”slots” of frames or objects canbe used); (iii) it permits a better visualization of
relations between concepts.

3.2.2 Less Expressive but More Intuitive Notations
Even if CGs seem relatively intuitive, they are not readable by everyone. Inrestricted cases, simpler notations may be preferable.
For instance, Figure 4 shows notations that are accepted by WebKB as equivalentto the following CG:
TC for KADS1_conceptual_model(x) are //note: TC means "Typical Conditions"
[KADS_conceptual_model:*x]-
{ (Part)->[Model_of_problem_solving_expertise];

(Part)->[Model_of_communication_expertise];
(Part)->[Model_of_cooperation_expertise];
(Input)<-[Knowledge_design]->(Output)->[Knowledge_base_system];

}

/* Structured text (":" ends the name of a "typical" relation,
"=>" of a "necessary" relation, "<=" of a sufficient relation) */

KADS1 conceptual model.
Part: Model of problem solving expertise,

Model of communication expertise,
Model of cooperation expertise.

Input of: Knowledge design (Output: Knowledge base system).

/* Text structured with HTML tags (and same conventions for relations) */
<dl><dt>KADS1 conceptual model

<dd>Part: Model of problem solving expertise
Model of communication expertise
Model of cooperation expertise

<dd>Input of: Knowledge design (Output: Knowledge base system)

</dl>

/* Formalized english */
Typically, a KADS1 conceptual model has for part a model of problem solving expertise,
a model of communication expertise and a model of cooperation expertise.
Typically, knowledge design has for input a KADS1 conceptual model and for output a
knowledge base system.

Figure 4: Complementary notations for simple knowledge statements.

3.2.3 Allowing Undeclared Terms in Knowledge Statements
The user may not want to take the time to declare and order many of the terms s/he uses when representing knowledge. This may
for example be the case when a user indexes sentences from various documentsfor private knowledge organisation purposes.

To permit this, and still allow the system to perform some minimal semantic checks and knowledge organisation, we propose
the casual user represent knowledge with basic declared relation types and leaveundeclared the terms used as concept types.
This method has the following rationales:� If knowledge statements are made from concepts linked by basic relations, i.e. if the complexity is manifest within

concept types rather than in relation types, only a limited set of relation types are necessary for an application. WebKB
already proposes a top-level ontology of 200 basic relation types27 [2] [3] collecting common thematic, mathematical,
spatial, temporal, rhetorical and argumentative relations types.� WebKB can use relation signatures to give suitable types to the undeclared terms used as concept types. For instance, in
the top-level ontology proposed by WebKB, the relation typesInput, Output, Agent, Method, SubProcessandPurpose
are all defined to have a concept of typeProcessas the first argument. Hence, in the previous example, WebKB can infer
thatKnowledgedesignmust be a subtype ofProcess.� We have merged the natural language ontology WordNet28 (120,000 words linked to 90,000 concept types) into our top-
level ontology (cf. [2] [3]). When the WebKB shared repository is implemented and initialized with these ontologies,
it will be possible for WebKB to semi-automatically relate the undeclaredterms used as concept types to precise
concept types in the repository, thanks to links between words and concept types and to constraints imposed by the27http://meganesia.int.gu.edu.au/˜phmartin/WebKB/kb/topLevelOntology.html28http://www.cogsci.princeton.edu/˜wn/

relation signatures. Consider for example, the following CG where the termsCat andTablehave not been declared:
[Cat]->(On)->[Table]. In WordNet, the wordcat has 5 meanings (feline, gossiper, X-ray, beat and vomit) and the
word table, 5 meanings (array, furniture, tableland, food and postpone). In the WebKB ontology, the relation typeOn
connects a concept of typeSpatialentity to another concept of the same type. Thus, WebKB can infer that “beat” and
“vomit” are not the intended meanings forCat, and “array” and “postpone” are not the intended meanings forTable.
To further identify the intended meanings, WebKB could prompt the following questions to the user: “doesCat refer to
feline, gossiper, X-ray or something else?” and “doesTablerefer to furniture, tableland, food or something else?”.� Knowledge statements are more readily comparable if they follow the sameconventions. The convention of using basic
relations is thus important. (The alternative convention — using primitive concepts and complex relations — would be
much harder to follow). Consider for example the sentence “Mary is 20 yearsold”. Following our conventions it is better
to use the concept typeAge, e.g. [Person:"Mary"]->(Chrc)->[Age:@20],
rather than the relation typeAge, e.g. [Person:"Mary"]->(Age)->[Integer: 20],
unless this relation type has been predefined by a user:29

relation Age (x,y) is [Age]- { (Chrc)->[Living_entity:*x];

(Measure)->[Integer:*y];

}

By default, WebKB enforces the use of declared terms in the CG linear notationbut permits undeclared terms (for types and
instances) in the other (simpler) notations (cf. Figure 4). The commands “decl” and “no decl” overide this default mode and
an exclamation mark before a term explicitly tells the system that the termwas deliberately left undeclared. Quoted sentences
may also be used: they are understood by WebKB as individual concepts of type “Description”.

Another facility of the WebKB parser is that, like HTML browsers, it ignores HTML tags (except definition list tags) in
knowledge statements. However, when these statements are displayed in response to a query, they are displayed using the
exact form given by the user, including HTML tags. Thus, the user may combine HTML or XML features with knowledge
statements, e.g. s/he may put some types in italics or make them the sourceof hypertext links.

3.3 Indexing any Document Element using Knowledge

3.3.1 General Cases
We call a Document Element (DE) any textual/HTML data, e.g. a sentence, a section, a reference to an image or to an entire
document. This definition excludes binary data but includes textual knowledge statements. WebKB allows users to index any
DE of a Web-accessible document (or later of our repository) by knowledgestatements, or connect DEs by relations. Figure 5
shows an example of each case.

$(Indexation
(Context: Language: CG;

Ontology: http://www.bar.com/topLevelOntology.html;
Repr_author: phmartin; Creation_date: Mon Sep 14 02:32:21 1998;
Indexed_doc: http://www.bar.com/example.html;)

(DE: {2nd occurence} the red damaged vehicle)
(Repr: [Color: red]<-(Color)<-[Vehicle]->(Attr)->[Damaged])

)$

$(DEconnection
(Context: Language: CG;

Ontology: http://www.bar.com/topLevelOntology.html;
Repr_author: phmartin; Creation_date: Mon Sep 14 02:53:36 1998;)

(DE: {Document: http://www.bar.com/example.html})
(Relation: Summary)
(DE: {Document: http//www.bar.com/example.html} {section title: Abstract})

)$

Figure 5: A language for knowledge indexing or connecting any Web-accessible document element.29This solution implies that the inference engine expands therelation type definition when comparing graphs. Few CG engines can perform type expansion.

XML provides more ways to isolate and reference DEs than HTML. Since WebKBexploits the capacities of Web-browsers,
XML mechanisms may be used by the WebKB users. However, XML does not help users to annotate others’ documents since
DEs cannot be referenced if they have not been explicitly delimited by the documents’ authors. Therefore, the WebKB facility
of referring to a DE by specifying its content and its occurrence number will still be useful.

3.3.2 A Simple Example
The above indexation notations allow the statements and the indexed DEs to be in different documents. Thus, any user may
index any element of a document on the Web. Figure 2 presents a general interface for knowledge-based queries and shows
how a document containing knowledge must be loaded in the WebKB processor before being queried.

WebKB also allowsthe author of a documentto index an image by a knowledge statement directly stored in the “alt” fieldof the
HTML “img” tag used to specify the image. We use this special case of indexation to present a simple illustration of WebKB’s
features. This example, shown in Figure 6, is a good synthesis but inno way representative of the general use of WebKB —
it is not representative because it mixes the indexed source data (in thiscase, a collection of images), their indexation, and a
customized interface to query them, in a single document. Figure 7 showsa part of this document that illustrates the indexation.
The result of the query shown in Figure 6 is displayed in Figure 8.

Figure 6: Images, indexations and a customized query interface within a same document(the example query shows how the
command “spec” can be used to retrieve images indexed by CGs. See the results in Figure 8).

Figure 7: The HTML source of the indexation of the images shown in Figure 6.

Figure 8: The document generated in response to the query in Figure 6.

3.4 Knowledge Query Commands
WebKB has commands for displaying specializations or generalizations of a concept or relation type or an entire CG in a
knowledge base. At present, queries for CG specializations only retrieve connected CGs: the processor cannot retrieve paths
between concepts specified in a query. If a retrieved CG indexes a document element, it may be presented instead of the CG
(Figure 8 gives an example). In both cases, hypertext links are generated toreach the source of each answer presented in its
original document — a copy of this original document will be presented byWebKB in order to instruct the Web browser to
display and highlight the selected answer in its source document. What follows is an example of such an interaction, assuming
that http://www.bar.com/example.html is the file where the indexation in Figure 5 has been stored, andSomethingis the most
general concept type.

> load http://www.bar.com/example.html

> spec [Something]->(Color)->[Color: red]

[Color: red]<-(Color)<-[Vehicle]->(Attr)->[Damaged];

Source

> use Repr //display represented DEs

> spec [Something]->(Color)->[Color: red]

the red damaged vehicle

Source

Queries for specializations give the user some freedom in the way s/he expresses queries: searches may be done at a general level
and subsequently refined according to the results. However, the exact names of types must be known. To improve this situation,
WebKB allows the user to give only a substring of a type in a query CGif s/he prefixed this substring by the character %.
WebKB generates the actual request(s) by replacing the substring by the manually/automatically declared types that include
that substring. Replacements that violate the constraints imposed by relation signatures or individual types are discarded. Then,
each remaining request is displayed and executed. For example,spec [%thing] will trigger the generation and execution of
spec [Something].

Knowledge query commands may be combined with the script language to generate complex documents, perform consistency
tests on the knowledge base, or solve problems procedurally. The WebKBsite provides many examples of queries and scripts.
For example, one script solves the Sisyphus-I room allocation problem30. The reader is invited to test these examples31.
Here is an example of a script showing that the procedural language frees usto add some special operators to our query language,
such as the modal operators “few” and “most”, since they are easily definable bythe user.
spec [Something] | nbArguments | set nbCGs;
spec [Cat] | nbArguments | set nbCGsAboutCat;
set nbCGsdiv2 ‘expr $nbCGs / 2‘;
if ($nbCGsAboutCat > $nbCGsdiv2)
{ echo "Most CGs of the base are about cats"; }

3.5 Knowledge Generation Commands
The only type of knowledge generation commands in WebKB are commands thatjoin CGs. Various kinds of joins may
be defined but WebKB only proposes joins which, given a set of CGs, create anew CG specializing each of the source CGs.
Though the result is inserted in the CG base, it may not represent anything true for the user, but provides a device for accelerating
knowledge representation. For instance, in WebKB, CGs related to a type maybe collected and automatically merged via a
command such as this one:spec [TypeX] | maxjoin. The result may then serve as a basis for the user to create a type
definition for TypeX.

The following is a concrete example for the maximal join command.
> maxjoin [Cat]->(On)->[Mat] [Cat:Tom]->(Near)->[Table]

[Cat:Tom]- { (On)->[Mat];

(Near)->[Table];

}30http://meganesia.int.gu.edu.au/˜phmartin/WebKB/kb/sisyphus1.html31http://meganesia.int.gu.edu.au/˜phmartin/WebKB/, or if this server is down, http://www.int.gu.edu.au/˜phmartin/WebKB/

3.6 Embedding Commands in Documents
We have seen how knowledge statements may be embedded in documents and how adequate notations such as structured text
or formalized English may ease the process of merging knowledge and its documentation.

It is also interesting to embed knowledge-based and string-based commands inside documents so that parts of these documents
are automatically generated by collecting information or knowledge stored elsewhere. Alternatively, within HTML documents,
Javascript may be used for associating a query to an hypertext link in sucha way that the query is sent to the WebKB query
processor when the link is activated (then, as for any other query, the WebKBprocessor generates an HTML document that
includes the results; if the query has been sent from a Web-browser, thisdocument is automatically displayed). In the hypertext
literature this technique is known asdynamic linkingand the generated document is called adynamic documentor a virtual
document[4]. This idea has many applications, e.g. adapting the content of a document to an individual user. Metadata
languages do not currently include knowledge queries and therefore do notsupport dynamic linking.

Scripts may also be used for generating entire documents, e.g. for reporting results of tests on knowledge. In this case, constant
strings may be generated using “print” commands.

4 A Top-Level Ontology
The top-level ontology proposed by WebKB was designed to guide and accelerate the creation of application ontologies
and the building of knowledge statements. This ontology gathers about 200 common basic relation types (e.g. thematic,
mathematical, spatial, temporal, rhetoric and argumentative relation types)and classifies them in a subsumption hierarchy
according to their meaning and the kinds of concepts they connect. Figure 9 shows the upper levels of this hierarchy displayed
with the WebKB hierarchy browser. As an example, rhetorical relation types come from the Generalized Upper Model32 and the
argumentation relation types come from the cooperation oriented hypertext system AAA[5]. These relations specialize the type
BinaryRelfrom a descriptionsince they connect descriptions. A synthesis of the most useful of relations between descriptions
is proposed in the menu of the WebKB interface for connecting document elements by conceptual relations.

The ontology also structures about 200 general concept types needed for the signatures of the basic relation types, for setting
minimal constraints on terminological knowledge, and for representing some useful knowledge acquisition notions such as
KADS33 elements and generic task models. Figure 10 shows the upper levels of theconcept types hierarchy. These levels
provide a synthesis of classic elementary distinctions that allow one to organise the top-level ontology (and the ontologies that
specialize it) into partitions (i.e. in exclusive34 sets of types):Situation(an aspect of a real or imaginary world) /Entity (things
involved in a situation),Process(situation considered as changing by the user who represents it) /State(situation considered as
static),Temporal entity(a point or extent in space) /Spatial entity(a point or extent in time) /Information entity(partition of the
distinctionsDescription/ Description container/ Property/ Property measure). We have not included the distinctionsAbstract
thing / Concrete thingandCollection/ Elemental thingin the upper levels in order to keep them easy to visualize (it is also
difficult to classify natural language concepts according to these distinctions). However, the typeCollectionand sub-partitions
for these types have been included, and it seems that the usual sub-distinctions of abstract things have been represented via
other distinctions (e.g. what we call temporal entities and information entities are often considered as abstract entities).

These ontological distinctions may appear obvious but we have often noted that even when these distinctions are clearly stated
and used, users make semantic errors when they represent knowledge. Consider for example, two concept types named
RepresentationandObservation. They could refer to a state, a process, the result of this process (which could either be a
description or the thing(s) described) or a document used for storingthis result. The creator of such types would probably not
make the exact category explicit if s/he was not induced into that by an ontology such as ours. The relation signatures and the
exclusive links between our top-level types allow a system like WebKB to do some semantic checks when types are used or
specialized by their creators or other users. For example, ifObservationrefers to a state, the user will not be allowed to use the
relation typeAgent(e.g. instead of the relation typesConsequenceor Successor) to connect a concept of typeObservationto
another concept. For the same reasons, our top-level distinctions make the ontology they structure more reusable.

Using our top-level ontology, we have structured and complemented the upper levels of the WordNet lexical database. The
90,000 WordNet concept types are subsumed by our top-level ontology and may be accessed from this top-level ontology via
a browser (cf. [2] and [3] for such a browser). The constraints in the top-level ontology are convenient to check the use of the
WordNet types or even sometimes to understand what they refer to. Other ontologies could be structured and complemented in
the same way.32http://www.darmstadt.gmd.de/publish/komet/gen-um/newUM.html33http://www.swi.psy.uva.nl/projects/CommonKADS/home.html34Exclusive types may not have common subtypes.

Figure 9: Uppermost relation types of the WebKB top-level ontologyas shown by the WebKB hierarchy browser(types at the
same level in a same box are exclusive but are not exclusive with types in other boxes).

5 Conclusion
Current information retrieval techniques are not knowledge-enabled and hence cannot give precise answers to precise questions
(e.g. about the semantic content of documents). This is due to the difficulties involved with automated extraction of knowledge
from general documents. As an intermediate step to overcome this problem, acurrent trend on the Web is to allow users to
annotate documents using metadata languages. On the basis of ease and representational completeness, we have argued for the
use of a knowledge representation language such as Conceptual Graphs rather than the direct use of XML-based languages.
To allow users to represent and query knowledge at the level of detail they desire, we have proposed simple notations for
restricted knowledge representation cases and techniques allowing users to leave knowledge terms undeclared. To support
this approach, we have presented a top-level ontology, and developed Web-accessible knowledge-based tools and Unix-like
tools for indexing, retrieving and generating information. At present, knowledge has to be formulated and stored by users in
Web-accessible documents. To improve cooperation, we are extending WebKBto support the building of a Web-accessible
knowledge repository by multiple users.

Acknowledgments
This work is supported by a research grant from the Australian Defense, Science and Technology Organisation.

Figure 10: Uppermost concept types of the WebKB top-level ontology(types at the same level in a same box are exclusive;
types beginning by WN come from the WordNet ontology).

References
[1] S. Decker, et al., Ontobroker: Ontology Based Access to Distributed andSemi-Structured Information, in R. Meersman

et al. (eds.), Semantic Issues in Multimedia Systems, Kluwer Academic Publisher, Boston, 1999.

[2] Ph. Martin, Using the WordNet Concept Catalog and a Relation Hierarchy for Knowledge Acquisition,
in Proc. Peirce’95, 4th International Workshop on Peirce, Santa Cruz, California, August 18, 1995.
http://www.inria.fr/acacia/Publications/1995/peirce95phm.ps.Z

[3] Ph. Martin, Exploitation de graphes conceptuels et de documents structurés et hypertextes pour l’acquisition de
connaissances et la recherche d’informations. PhD Thesis, University of Nice - Sophia Antipolis, France, 1996.
http://meganesia.int.gu.edu.au/˜phmartin/PhD.html

[4] J. Nanard, M. Nanard, A. Massotte, A. Djemaa, A. Joubert, H. Betaille, J.Chauch, Integrating Knowledge-based Hypertext
and Database for Task-oriented Access to Documents, Proc. DEXA’93, Prague, Springer Verlag, LNCS Vol. 720, Prague,
1993, pp. 721-732.

[5] Schuler, W. and Smith, J.B., Author’s Argumentation Assistant(AAA): A Hypertext-Based Authoring Tool for
Argumentative Texts, in Proc. ECHT’90 (INRIA, France, November 1990), Cambridge University Press, pp. 137-151.

6 Vitae

Dr Philippe Martin is a Research Fellow at Griffith University’s School of Information Technology (Australia). Philippe
received an engineer degree in Software Engineering (Sept. 1992) and his Ph.D. in Software Engineering (Oct. 1996) both
from the University of Nice - Sophia Antipolis (France). This Ph.D.was undertaken at the INRIA of Sophia Antipolis (France),
ACACIA project. Since then, Philippe has been member of the Knowledge Visualisation and Ordering (KVO) group at the
University of Adelaide in 1997 and at Griffith in 1998. His main research interests are knowledge representation, sharing and
retrieval.

Professor Peter W. Eklund is the Foundation Chair of the School of Information Technology at Griffith University and research
leader of the KVO group. Peter graduated with Honours in Mathematics from Wollongong University (Australia) in 1985,
was awarded an M.Phil. degree from Brighton University (UK) in 1988,and received his Ph.D. in Computer Science from
Linköping University in Sweden in 1991. Peter was a visiting research scholar at Hosei University (Japan) in 1992 and Senior
Lecturer in Computer Science at The University of Adelaide from December 1992to 1997. He was appointed Professor and
Foundation Chair of Information Technology at Griffith University in January 1998. His main research interests are knowledge
ordering and visualisation.

